
Chapter 32
A Simulation-Based Study on Memory Design
Issues for Embedded Systems

Mohsen Sharifi, Mohsen Soryani, and Mohammad Hossein Rezvani

32.1 Introduction

Due to the increasing gap between the speed of CPU and memory, cache designs
have become an increasingly critical performance factor in microprocessor systems.
Recent improvements in microprocessor technology have provided significant gains
in processor speed. This dramatic rise has increased further the gap between the
speed of the processor and main memory. Thus, it is necessary to design faster
memory systems. In order to decrease the processor–memory speed gap, one of the
main concerns has to be in the design of an effective memory hierarchy including
multilevel cache and TLB (Translation Lookaside Buffer).

On the other hand, a notable part of the computer industry nowadays is involved
in embedded systems. Embedded systems play a significant role in almost all
domains of human activities including military campaigns, aeronautics, mobile
communications, sensor networks, and industrial local communications. Timeliness
of reactions is necessary in these systems and offline guarantees have to be de-
rived using safe methods. Hardware architectures used in such systems now feature
caches, deep pipelines, and all kinds of speculations to improve average-case per-
formance. The speed and size are two important concerns of embedded systems in
the area of memory architecture design. In these systems, it is necessary to reduce
the size of memory to obtain better performance.

Real-time embedded systems often have a hard deadline to complete some in-
structions. In these cases, the speed of memory plays an important role in sys-
tem performance. Cache hits usually take one or two processor cycles, whereas
cache misses take tens of cycles as a penalty of mishandling and so the speed
of memory hierarchy is a key factor in the system. Almost all embedded proces-
sors have on-chip instructions and data caches. From a size point of view, it
is critical for battery-operated embedded systems to reduce the amount of con-
sumed power.

453



454 M. Sharifi et al.

Another factor that affects cache performance is the degree of associativity.
Nowadays, modern processors include multilevel caches and TLBs and their
associativity is increasing. Therefore, it is critical to revisit the effectiveness of
common cache replacement policies. When all the lines in a cache memory set be-
come full and a new block of memory needs to be replaced into the cache memory,
the cache controller must replace it with one of the old blocks in the cache. If the
extracted cache memory line is needed in the near future, the performance of the
system will be degraded. Therefore, the cache controller should extract a proper
line from the cache. However, it can only guess which cache memory line should
be discarded. The state-of-the-art processors employ various policies such as LRU
(Least Recently Used) [1], Random [2], FIFO (First-In First-Out) [3], and PLRU
(Pseudo-LRU) [4]. This shows that the selection of a proper replacement policy is
still an important challenge in the field of computer architecture. All these policies,
except Random, determine which cache memory line to replace by looking only at
the previous references.

LRU policy increases the cost and implementation complexity. To reduce these
two factors, Random policy can be used, but potentially at the expense of desirable
performance. Researchers have proposed various PLRU heuristics to reduce the cost
by approximating the LRU mechanism. Recent studies have considered only pure
LRU policy [5–7] and have used the compiler optimization [8] or integrated ap-
proaches including hardware/software techniques [9].

One of the goals of our study is to explore common cache replacement policies
and compare them with an optimal (OPT) replacement algorithm. An OPT algo-
rithm would replace a cache line whose next reference is the farthest away in the
future among all the cache lines [7]. This policy requires knowledge of the future,
and hence its real implementation is impossible. Instead, heuristics have to be used
to estimate it. We study OPT, LRU, a type of PLRU, Random, and FIFO policies
on a wide range of cache organizations, varying cache sizes, degree of associativity,
cache hierarchy, and multilevel TLB hierarchy.

Another goal in this study is to investigate the performance of the two-level TLB
against the single-level TLB. This analysis is done in conjunction with cache analy-
sis. Virtual to physical address translation is a significant operation because this is
invoked on every instruction fetch and data reference. To speed up the address trans-
lation, systems provide a cache of recent translations called TLB, which is usually
a small structure indexed by the virtual page number that can be quickly looked up.
Several studies have investigated the importance of TLB performance [10]. The idea
of multilevel TLB has been investigated in [11–13]. We compare the performance
of a two-level TLB with traditional single TLB.

The performance analysis is based on SimpleScalar’s [14] cache simulators exe-
cuting selected SPEC CPU2000 benchmarks [15]. Using a two-level TLB, we study
the degree of cache associativity that is enough to offer a low miss rate with re-
spect to SPEC CPU2000. Some prior research has investigated this subject, but
only for traditional replacement policies such as LRU [5, 6]. We offer a compet-
itive simulation-based study to reveal the relationship between cache miss rates pro-
duced by selected benchmarks and cache and TLB configurations. Additionally, we



32 Memory Design Issues for Embedded Systems 455

measure the gap between miss rates of various replacement policies, especially OPT
and the LRU family (such as PLRU which is less expensive than LRU). Similar mea-
surements have been done in the literature for other modifications of LRU policy.
Wong and Baer [9] demonstrated the effectiveness of a modification of the standard
LRU replacement algorithm for large set associative L2 (level two) caches.

The aim of this chapter is to offer a comprehensive and simulation-based per-
formance evaluation of the cache and TLB design issues in embedded processors
such as two-level versus single TLB, split versus unified cache, cache size, cache
associativity, and replacement policy.

The rest of chapter is organized as follows. Section 32.2 elaborates the prob-
lem under our study, related works on hierarchical TLB, specifications of SPEC
CPU2000 benchmarks, and the reasons for selecting the benchmarks used in our
study. Section 32.3 describes the setup of our experiments. Section 32.4 reports the
results of our experiments, and Sect. 32.5 concludes the chapter.

32.2 Related Work

Three categories of related works have guided our study: prior research on cache
replacement policies, prior research on hierarchical TLB mechanisms, and prior
research on specifications of the SPEC CPU2000 benchmarks.

Several properties of the processor caches influence performance: associa-
tivity, replacement, and write policy, and whether there are separated data and
instruction caches. The predictability of different cache replacement policies is
investigated in [9]. The following are widely used replacement policies in commer-
cial processors.

• LRU used in Intel Pentium and MIPS 24K/34K
• FIFO (or Round-Robin), used in Intel XScale, ARM9, ARM11
• PLRU used in Power PC 75X and Intel Pentium II, III, and IV

Cache implementations vary from direct-mapped to fully associative. With
direct-mapped caches, also called one-way caches, each memory block is mapped
onto a distinct cache line, whereas with fully associative cache memory, each mem-
ory block can be mapped to any of the empty cache lines. Generally, with k-way set
associative cache memory, a memory block can be mapped to any of the empty lines
among k cache lines within the set to which the block belongs. If all cache lines
within the set are full, one of the cache lines is extracted according to a replacement
policy.

As the degree of cache associativity increases, selecting an efficient replacement
policy becomes more important [3]. Traditionally, most processors have chosen
the LRU policy as the replacement policy. LRU replacement maintains a queue of
length k, where k is the associativity of the cache. If an element is accessed that is not
yet in the cache (a miss), it is queued at the front and the last element of the queue
is removed. This is the least recently used element of those in the queue. At a cache



456 M. Sharifi et al.

hit, the element is moved from its position in the queue to the front, effectively treat-
ing hits and misses equally. The contents of LRU caches are very easy to predict.
Having only distinct accesses and a strict least recently used replacement, directly
yields the tight bound k, that is, the number of distinct accesses (hits or misses)
needed to know the exact contents of a k-way cache set using LRU replacement is
k [16]. The weak point of this policy is its requirement of time and power.

To reduce the cost of LRU policy, Random policy [2] with lower performance is
used. In this policy, the victim line is chosen randomly from all the cache lines in the
set. Another candidate policy is FIFO, which can also be seen as a queue: new ele-
ments are inserted at the front evicting elements at the end of the queue. In contrast
to LRU, hits do not change the queue. Real implementations use a Round-Robin re-
placement counter for each set pointing to the cache line that will be replaced in the
future. This counter is increased if an element is inserted into a set, and a hit does
not change this counter. In the case of misses only, FIFO behaves as does LRU.
Thus, it has the tight bound k [16].

An approximation to the LRU mechanism is PLRU [17, 18]. This policy speeds
up operations and reduces the complexity of the implementation. One of the PLRU
implementations is based on using the most recently used (MRU) bits. In this policy,
each line is assigned an MRU-bit, stored in a tag table. Every access to a line sets
its MRU-bit to 1, indicating that the line has been recently used. PLRU is deadlock-
prone. Deadlock occurs if the MRU-bits for all blocks are set to 1 and therefore
none of them is ready to be replaced.

In order to prevent this situation, whenever the last 0 bit of a set is set to 1,
all other bits are reset to 0. At each cache miss, the line with lowest index (in our
representation the leftmost line) whose MRU-bit is 0 is replaced. As an example,
we represent the state of an MRU cache set as [A, B, C, D]0101, where 0101 are
the MRU-bits and A, . . . , D are the contents of the set. On this state, an access to
E yields a cache miss and new state [E, B, C, D]1101. Accessing D leaves the state
unchanged. A hit on C forces a reset of the MRU-bits: [E, B, C, D]0010.

Figure 32.1 illustrates the MRU policy with respect to the above scenario. For
the MRU replacement policy, it is impossible to give a bound on the number of

Fig. 32.1 An illustrative example of MRU replacement policy



32 Memory Design Issues for Embedded Systems 457

Table 32.1 Bits used for each replacement policy

Replacement policy Used bits

Random Log2ways
FIFO Nsets. Log2ways
LRU Nsets.ways. Log2ways
MRU Nsets.ways

accesses needed to reach a completely known cache state [16]. It seems that this
method looks like LRU and FIFO; hence, we expect its performance to be better
than FIFO and worse than LRU.

The LRU policy requires a number of bits to track when each cache line is ac-
cessed, whereas the MRU does not require as many bits. Indeed the MRU has less
complexity than LRU. Table 32.1 shows the amount of bits used in each replacement
policy [17].

Another contribution of our work is in studying two-level TLB in embedded sys-
tems and comparing its performance against single TLB. Many studies have pointed
out the importance of the TLB [19–23]. Hardware TLB hierarchy and its impact on
system performance are investigated in [11, 12, 20]. The advantages of multilevel
TLBs over single TLBs are studied in [13, 24]. There are also real implementa-
tions of multilevel TLBs in commercial processors such as Hal’s SPARC 64, IBM
AS/400 Power PC, Intel Itanium, and AMD. They use either hardware or software
mechanisms to update the TLB on the misses.

From the principal component analysis of raw data in [25] it is concluded that
several SPEC CPU2000 benchmark programs such as bzip, gzip, mcf, vortex, vpr,
gcc, crafty, applu, mgrid, wupwise, and apsi exhibit a temporal locality that is
significantly worse than other benchmarks. Concerning spatial locality, most of
these benchmarks exhibit a spatial locality that is relatively higher than that of the
remaining benchmarks. The only exceptions are gzip and bzip2 which exhibit poor
spatial locality. As pointed out in [25], there is lots of redundancy in the bench-
mark suite. Simulating benchmarks with similar behavioral characteristics will add
to the overall simulation time without providing any additional insight, so we have
selected our benchmarks based on clustering results presented in [25].

We have also noticed the results presented in [26] to select our benchmarks.
Some of SPEC CPU2000 benchmarks are eccentric, that is, have a behavior that
differs significantly from the behavior of other benchmarks. Eccentric benchmarks
are excellent candidates for case studies and it is important to include them when
subsetting a benchmark suite (e.g., to limit simulation time). These benchmarks
differ from the average SPEC CPU 2000 benchmark in different ways, for example,
requiring high associativity or suffering from repetitive conflict misses, having low
spatial locality, or benefiting from extremely large caches. For example, crafty has
a lower cache miss rate when the block size is small. It is also somewhat more
dependent on high associativity than other benchmarks. equake depends strongly on



458 M. Sharifi et al.

the degree of associativity and suffers from repetitive conflict misses. vpr is highly
sensitive to changes in data cache associativity, having a large number of misses.

32.3 Experimental Setup

The simulator used in our study is SimpleScalar. Performance of two-level TLB
with different cache replacement policies were evaluated using Sim-Cache and Sim-
Cheetah simulators from the Alpha version of this toolset [14].

The Sim-Cache engine simulates associative caches with FIFO, Random, and
LRU policies. The Sim-Cheetah engine simulates fully associative caches effi-
ciently, as well as simulating a sometimes-optimal replacement policy. Belady [27]
calls the latter policy MIN, whereas the simulator calls it OPT. Because OPT uses fu-
ture knowledge to select a replacement, it cannot be really implemented. It is, how-
ever, useful as a yardstick for evaluation of other replacement policies. We modified
the original simulator to support hierarchical two-level TLB and MRU replacement
policy as well as their native replacement policies, that is, FIFO, Random, LRU, and
OPT and its original single TLB.

As mentioned above, we have used selected benchmarks from the SPEC
CPU2000 suite as a simulation workload. Given the eccentricity of some bench-
marks, we filtered out benchmarks insensitive to increases in cache associativity.
We selected vpr, gcc, crafty, eon, and twolf as five integer benchmarks and mgrid,
apsi, fma3d, and equake as four floating-point benchmarks. Selected benchmarks
were used with reference data inputs. Instructions related to initializations were
skipped and the main instructions were simulated.

For each benchmark, we performed the simulation with various L1 data cache
organizations with 2-, 4-, and 8-way associativity, replacement policies as FIFO,
LRU, and MRU and various instruction and data cache sizes. In our experiments
all TLBs are assumed to be fully associative with the LRU replacement policy. We
changed the cache sizes with 4 KB, 8 KB and 16 KB. To study the impact of 2-level
d-TLB (data TLB), we compared its miss rates with that of a single TLB of the same
size (32+96 = 128 entries). Also in all experiments a cache line size was 32 bytes.
Relating to the cache memory, we considered two scenarios: in the first scenario,
the system consists of two separate data and instruction caches in the first level
(L1D and L1I) and in the second scenario, it only has a unified cache in the first
level (L1U) which serves both data and instruction references. Figure 32.2 shows
the above two scenarios.

The defaults used in Sim-Cache were as follows: 8 KB L1 instruction cache
and data cache, 256 KB L2 unified cache, i-TLB (instruction TLB) with 64 en-
try and d-TLB with 128 entries. In all memories, the default replacement policy
was LRU.



32 Memory Design Issues for Embedded Systems 459

Fig. 32.2 Two scenarios for memory hierarchy

32.4 Results of Experiments

32.4.1 The Effect of Two-Level TLB on Overall Performance

Table 32.2 shows the results of using hierarchical two-level d-TLB and single level
d-TLB. It shows the miss rates for each of the two levels as a percentage of the
number of references to that level, as well as the overall miss rate. The overall miss
rate is the percentage of references that do not find a translation in either of the
two levels. The results show higher overall TLB miss rates when using two-level
TLB, especially for twolf, gcc, crafty, and apsi. The average TLB miss rates for
selected integer benchmarks for two-level and single TLBs are 1.91% and 1.48%,
respectively, resulting in a degradation of about 0.43%. The miss rate degradation
for selected floating-point benchmarks is on average 0.46%.

Despite the higher miss rates, the benefit of a two-level TLB is in reducing the
access time of first level TLB and in avoiding accessing the second level. Figure 32.3
shows the normalized program execution times for the selected benchmarks. Here,
the normalized execution time is the ratio of program execution time with a two-
level TLB to its native execution time with single TLB. Except the two-level TLB,
the other parts of simulation are the same as defaults used in the SimpleScalar. The
two-level TLB is fully associative with LRU replacement, as is common in most
commercial processors.

The average reductions in execution time, when using two-level TLB for integer
and floating-point benchmarks, are about 0.32% and 0.60%, respectively. According
to the results, using a 2-level TLB cannot produce a conspicuous reduction in exe-
cution time, and it degrades the overall miss rate.



460 M. Sharifi et al.

Table 32.2 Miss rates of two-level TLB and single TLB

Benchmark Miss rate of Miss rate of Overall miss rate Miss rate of
first level second level of two-level TLB single TLB

Twolf 3.32 44.6 1.48 1.27
Vpr 4.21 41.1 1.73 1.68
Gcc 2.19 64.84 1.42 1.13
Crafty 1.27 96.06 1.22 0.09
Eon 3.85 96.36 3.71 3.24
Mgrid 21.78 97.56 21.25 20.23
Apsi 2.60 88.77 2.30 1.98
fma3d 1.93 78.23 1.51 1.21
Equake 20.34 94.93 19.31 19.12

Fig. 32.3 Normalized execution time for each benchmark with two-level TLB and Single TLB

32.4.2 The Effect of Cache Associativity, Size, and Replacement
Policy on Performance

Tables 32.3 and 32.4 show the average cache miss rates of integer and floating-
point benchmarks for the L1 data cache. The miss rates for floating-point applica-
tions are lower than integer applications when the L1 data cache is 4 KB. For larger
size L1 data caches of 8 KB and 16 KB miss rates of floating-point applications
become higher. In the L1 data cache, it is hard to select a replacement policy be-
tween FIFO and Random policies, and the difference between them decreases as
the cache size increases. There are applications where Random policy outperforms
FIFO. The crafty, fma3d, and equake are three examples of such applications in our
selected benchmarks. In other applications, FIFO has fewer misses against Random.



32 Memory Design Issues for Embedded Systems 461

Table 32.3 Average L1 data cache miss rates for five SPEC CPU2000 integer applications
(vpr, gcc, crafty, eon, and twolf)

1W 2W 4W 8W 16W 32W

4 KB FIFO 5.31 4.28 3.99 3.84 3.82 3.81
LRU 5.31 3.99 3.57 3.40 3.29 3.29
Random 5.31 4.36 4.09 3.98 3.92 3.92
MRU 5.31 3.99 3.60 3.47 3.38 3.35
OPT 5.31 3.62 3.57 2.36 2.23 2.18

8 KB FIFO 4.12 2.94 2.65 2.53 2.49 2.45
LRU 4.12 2.76 2.38 2.24 2.16 2.15
Random 4.12 2.94 2.65 2.55 2.49 2.46
MRU 4.12 2.76 2.38 2.25 2.18 2.16
OPT 4.12 2.12 1.76 1.61 1.53 1.49

16 KB FIFO 3.23 2.00 1.76 1.64 1.59 1.58
LRU 3.23 1.89 1.60 1.46 1.40 1.38
Random 3.23 2.00 1.78 1.75 1.61 1.60
MRU 3.23 1.89 1.61 1.49 1.46 1.38
OPT 3.23 1.89 1.28 1.17 1.12 1.10

Table 32.4 Average L1 data cache miss rates of four SPEC CPU2000 floating-point applications
(mgrid, apsi, fma3d, and equake)

1W 2W 4W 8W 16W 32W

4 KB FIFO 5.73 4.63 4.18 3.29 3.28 3.28
LRU 5.73 4.47 3.98 3.29 3.03 3.01
Random 5.73 4.69 4.53 3.89 3.54 3.52
MRU 5.73 4.53 3.99 3.29 3.03 3.03
OPT 5.73 3.30 2.82 2.45 2.20 2.14

8 KB FIFO 3.59 2.97 2.70 2.56 2.46 2.46
LRU 3.59 2.80 2.45 2.30 2.26 2.25
Random 3.59 3.13 2.92 2.80 2.55 2.46
MRU 3.59 2.88 2.53 2.41 2.33 2.29
OPT 3.59 2.39 2.02 1.78 1.64 1.61

16 KB FIFO 2.20 1.93 1.84 1.83 1.80 1.74
LRU 2.20 1.87 1.75 1.68 1.65 1.65
Random 2.20 2.09 2.04 2.04 2.03 1.97
MRU 2.20 1.92 1.76 1.75 1.73 1.72
OPT 2.20 1.71 1.59 1.55 1.54 1.54

In general, we can conclude that for the rest of the benchmarks, for larger cache
sizes, Random policy dominates, whereas for smaller cache sizes, FIFO dominates.

Experiments show that LRU policy is almost better than FIFO and Random, but
there are some exceptions. For example, Random policy is sometimes better than
LRU for equake and apsi. Compared to LRU policy, FIFO is on average about 17%
worse, whereas Random is about 18% worse.

Compared to LRU policy, the performance degradation of MRU is relatively
small; however, because of low complexity of MRU, we can neglect its degradation.



462 M. Sharifi et al.

The gap between MRU, the best realistic replacement used in this chapter, and OPT
is larger for smaller caches due to more conflict misses. The miss rate reduction is
more distinct, as the size of the L1 data cache decreases. The results show that the
largest reduction in miss rate is for transition from a direct-mapped to a two-way set
associative L1 data cache.

For both integer and floating-point benchmarks, increased associativity has a
large miss reduction with small caches. In floating-point applications, for large
caches (16 KB), associativity higher than two does not efficiently reduce the miss
rate, but for small caches (4 KB), the amount of miss reduction is noticeable. For L1
data cache sizes of 8 KB and 16 KB, the effect of increased associativity on miss re-
duction is more obvious for integer applications, than for floating-point applications.

As mentioned earlier, OPT replacement policy can be used as a yardstick to eval-
uate the replacement policies. From Tables 32.3 and 32.4 it can be deduced that the
OPT miss rate of a certain cache size is roughly close to the MRU miss rate of a
cache twice as big, with the same number of ways. For example, in Table 32.4, the
miss rate of an eight-way set associative cache with size 16 KB and MRU replace-
ment policy is 1.75%. This is approximately equal to the (1.78%) miss rate of an
eight-way set associative, 8 KB, optimal replacement policy. This shows that there
is still a large gap between OPT and realistic policies such as MRU. Therefore, if
near optimal policy can be found in practice, the size of caches can be reduced to
one-half.

32.5 The Effect of Split Cache Versus Unified Cache
on Performance

Tables 32.5 and 32.6 show the results of using split data and instruction caches
as the first-level caches against the common unified cache as the first-level cache.
For any of the k-way set associative unified caches in the table, the miss rate is
considerably higher compared to the aggregated miss rate of corresponding split
instruction and data caches of equivalent size. The difference becomes smaller as
the size of instruction and data caches increases.

Tables 32.5 and 32.6 show that for integer applications, a four-way set associative
cache, on average across various cache sizes, reduces the miss rate about 12% for
L1U, 12% for L1D, and 8% for L1I when compared to a two-way set associative
cache. The reduction of four-way over two-way for floating-point applications for
L1U, L1D, and L1I is 10%, 13%, and 9%, respectively. For integer applications the
benefit of an eight-way organization, compared to two-way set associative, is 13%
for L1U, 16% for L1D, and 12% for L1I, whereas for floating-point applications the
benefit of eight-way over two-way is 15%, 20%, and 12% for L1U, L1D, and L1I,
respectively. The results show that the gain of increasing associativity in the case of
data and unified caches is more than instruction caches.

As expected, LRU and MRU replacement policies perform better than Random
for data caches, although surprisingly, Random policy performs almost better than



32 Memory Design Issues for Embedded Systems 463

Table 32.5 Average cache miss rates for L1I, L1D, and L1U caches for selected SPEC CPU2000
integer applications

L1I of Size i KB L1D of Size i KB L1U of Size 2i KB

2W 4W 8W 2W 4W 8W 2W 4W 8W

i = 4 FIFO 5.52 5.55 5.61 4.28 3.99 3.84 15.30 13.98 13.82
LRU 5.48 5.50 5.57 3.99 3.57 3.40 14.99 13.55 13.37

Random 5.38 5.34 5.36 4.36 4.09 3.98 15.35 14.00 13.94
MRU 5.48 5.31 5.32 3.99 3.60 3.47 14.99 13.58 13.42
OPT 4.36 3.90 3.70 3.62 3.57 2.36 14.22 13.17 12.20

i = 8 FIFO 4.29 3.97 4.01 2.94 2.65 2.53 10.91 9.59 9.29
LRU 4.25 3.90 3.91 2.76 2.38 2.24 10.74 9.31 9.23

Random 4.01 3.61 3.47 2.94 2.65 2.55 10.91 9.62 9.50
MRU 4.24 3.71 3.54 2.76 2.38 2.25 10.74 9.32 9.27
OPT 3.11 2.45 2.21 2.12 1.76 1.61 9.10 7.71 7.63

i = 16 FIFO 2.75 2.75 2.60 2.00 1.76 1.64 7.02 5.62 5.61
LRU 2.70 2.71 2.57 1.89 1.60 1.46 6.85 5.51 5.43

Random 2.45 2.16 1.91 2.00 1.78 1.75 7.05 5.76 5.75
MRU 2.71 2.24 2.21 1.89 1.61 1.49 6.87 5.60 5.48
OPT 1.78 1.36 1.20 1.89 1.28 1.17 6.40 5.27 5.19

Table 32.6 Average cache miss rates for L1I, L1D, and L1U caches for selected SPEC CPU2000
floating-point applications

L1I of size i KB L1D of size i KB L1U of size 2i KB

2W 4W 8W 2W 4W 8W 2W 4W 8W

i = 4 FIFO 6.82 6.86 6.92 4.63 4.18 3.29 17.07 16.11 15.65
LRU 6.78 6.80 6.87 4.47 3.98 3.29 17.01 15.83 15.22

Random 6.67 6.65 6.68 4.69 4.53 3.89 17.91 16.20 15.73
MRU 6.78 6.61 6.62 4.53 3.99 3.29 17.05 15.91 15.30
OPT 5.69 5.20 5.03 3.30 2.82 2.45 15.00 13.11 12.51

i = 8 FIFO 5.58 5.27 5.30 2.97 2.70 2.56 14.85 13.55 13.27
LRU 5.53 5.24 5.26 2.80 2.45 2.30 14.11 12.80 12.50

Random 5.31 4.89 4.76 3.13 2.92 2.80 14.97 13.61 13.30
MRU 5.58 5.00 4.81 2.88 2.53 2.41 14.20 12.90 12.60
OPT 4.39 3.69 3.55 2.39 2.02 1.78 12.91 9.03 8.91

i = 16 FIFO 3.74 3.74 3.66 1.93 1.84 1.83 10.80 8.97 8.91
LRU 3.69 3.74 3.55 1.87 1.75 1.68 10.21 8.91 8.80

Random 3.34 3.04 2.87 2.09 2.04 2.04 10.98 8.99 8.94
MRU 3.69 3.26 3.25 1.92 1.76 1.75 10.29 8.92 8.85
OPT 2.75 2.34 2.14 1.71 1.59 1.55 9.23 7.50 7.46

LRU and MRU policies for instruction caches. The temporal locality of the instruc-
tion cache is low, compared to that of the data cache. Thus, a rich replacement pol-
icy such as LRU has approximately equal performance compared to Random policy,
which is a poor replacement policy.



464 M. Sharifi et al.

32.6 Conclusions

The organization of cache and TLB memory is a critical issue in general-purpose
embedded systems. This chapter presented a simulation-based study of the perfor-
mance evaluation to find the main cache design issues such as hierarchical TLB and
cache, cache size and associativity, and replacement policy in embedded processors.
We selected some applications from the SPEC CPU2000 benchmark suite based
on eccentricity and clustering concepts and found that the two-level TLB would
not produce a significant reduction in execution time, while degrading the overall
miss rate.

The experimental results showed that the gain of increasing associativity in the
case of data and unified caches is more than instruction caches. In the L1 data cache
and L1 unified cache, the largest miss rate reduction occurs for transition from a
direct-mapped to a two-way set associative. In floating-point applications, for large
caches, associativity higher than two, does not effectively reduce the miss rate, but
for small caches, the amount of reduction in miss rate is noticeable.

As expected, LRU and MRU replacement policies perform better than Random
for data caches, and surprisingly, for instruction caches, Random policy performs
almost better than LRU and MRU. Comparing FIFO and random policies, for larger
data cache sizes, Random policy dominates, whereas for smaller cache sizes, FIFO
dominates. Nevertheless, in general for the L1 data cache, it is hard to select a winner
replacement policy between FIFO and Random policies, and the difference between
them decreases as the cache size increases.

For large caches, the MRU policy is a good approximation of LRU policy. Com-
pared to LRU policy, MRU has less complexity and according to our results has
negligible miss rate degradation.

The results of experiments also illustrated that the performance of OPT policy
is nearly the same as the performance of the lower-cost MRU policy using a cache
twice as big. This shows that there is still a large gap between optimal replacement
policy and realistic replacement policies such as MRU. Eliminating this gap will
reduce the size of caches even to one-half of their current sizes.

With respect to the attempts of memory designers to reduce the amount of power,
our results offer valuable insights into the design of memory for embedded systems.

References

1. Kalavade A, Knoblock J, Micca E, Moturi M, Nicol CJ, O’Neill JH, Othmer J, Sackinger E,
Singh KJ, Sweet J, Terman CJ, Williams J (2000). A single-chip, 1.6 billion, 16-b MAC/s
multiprocessor DSP. IEEE Journal of Solid-State Circuits, 35(3), pp. 412–423.

2. Hennessy JL, Patterson D (2003). Computer Architecture: A Quantitative Approach. Third
Edition, San Mateo. CA: Morgan Kaufmann.

3. Intel XscaleTM (2000). Core: Developer’s Manual, December (2000). URL: http://developer.
intel.com.



32 Memory Design Issues for Embedded Systems 465

4. Intel Pentium 4 and Intel Xeon Processor Optimization: Reference Manual
TM

. Reference
Manual. URL: http://developer.intel.com.

5. Cantin JF, Hill MD (2000). Cache performance of the SPEC CPU2000 benchmarks. URL:
http://www.cs.wisc.edu/multifacet/misc/spec2000cachedata/.

6. Sair S, Chamey M (2000). Memory behavior of the SPEC2000 benchmark suite. IBM
Thomas J. Waston Research Center, Technical Report RC-21852.

7. Thomock NC, Flangan JK (2000). Using the BACH trace collection mechanism to character-
ize the SPEC 2000 integer benchmarks. Workshop on Workload Characterization.

8. Wang Z, McKinley K, Rosenberg A, Weems C (2002). Using the compiler to improve cache
replacement decisions. The International Conference on Parallel Architectures and Compila-
tion Techniques, Charlottesville, Virginia.

9. Wong W, Baer JL (2000). Modified LRU policies for improving second-level cache behavior.
The 6th International Symposium on High-Performance Computer Architecture, Toulouse,
France.

10. Jacob BL, Mudge TN (1998). A look at several memory management units: TLB-refill mech-
anisms, and page table organizations. Proceedings of the Eight International Conference on
Architectural Support for Programming Languages and Operating Systems, pp 295–306.

11. Talluri M (1995). Use of superpages and subblocking in the address translation hierarchy. PhD
thesis, Deptartment of CS, Univiversity of Wisconsin at Madison.

12. Nagle D, Uhlig R, Stanley T, Sechrest S, Mudge T, Brown R (1993). Design tradeoffs for soft-
ware managed TLBs. Proceedings of the 20th Annual International Symposium on Computer
Architecture, pp 27–38.

13. Chen JB, Borg A, Jouppi NP (1992). A simulation based study of TLB performance. Proceed-
ings of the 19th Annual International Symposium on Computer Architecture, pp 114–123.

14. Burger D, Austin T (1997). The SimpleScalar tool set, version 2.0. Technical Report #1342,
Computer Sciences Department, University of Wisconsin, Madison, WI.

15. Henning JL (2000). SPEC CPU2000: Measuring CPU performance in the new millennium.
IEEE Computer, 33(7), pp 28–35.

16. Reineke J, Grund D, Berg C, Wilhelm R (2006). Predictability of cache replacement policies.
AVACS Technical Report No. 9, SFB/TR 14 AVACS.

17. Malamy A, Patel R, Hayes N (1994). Methods and Apparatus for Implementing a Pseudo-LRU
Cache Memory Replacement Scheme with a Locking Feature. United States Patent 5353425.

18. So K, Rechtshaffen RN (1988). Cache operations by MRU change. IEEE Transaction on Com-
puters, 37(6), pp 700–707.

19. Anderson TE, Levy HM, Bershad BN, Lazowska ED (1991). The interaction of architec-
ture and operating system design. Proceedings of the Fourth International Conference on
Architectural Support for Programming Languages and Operating Systems, Santa Clara, CA,
pp 108–120.

20. Jacob B, Mudge T (1998). Virtual memory in contemporary microprocessors. IEEE Micro,
18(4), pp 60–75.

21. Clark DW, Emer JS (1985). Performance of the VAX- 1/780 translation buffers: Simulation
and measurement. ACM Transactions on Computer Systems, 3(1).

22. Huck J, Hays J (1993). Architectural support for translation table management in large ad-
dress space machines. Proceedings of the 20th Annual International Symposium on Computer
Architecture, pp 39–50.

23. Rosenblum M, Bugnion E, Devine S, Herrod S (1997). Using the SimOS machine simulator to
study complex computer systems. ACM Transactions on Modeling and Computer Simulation,
7(1), pp 78–103.

24. Austin TM, Sohi GS (1996). High bandwidth address translation for multiple issue processors.
The 23rd Annual International Symposium on Computer Architecture.

25. Phansalkar A, Joshi A, Eeckhout L, John K (2004). Four generations of SPEC CPU bench-
marks: What has changed and what has not. Technical Report TR-041026-01-1.

26. Vandierendonck H, De Bosschere K (2004). Eccentric and fragile benchmarks. 2004 IEEE
International Symposium on Performance Analysis of Systems and Software, pp 2–11.

27. Belady LA (1966). A study of replacement algorithms for a virtual-storage computer. IBM
Systems Journal, 5(2), pp 78–101.




