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Abstract. Today, multi-core processors dominate server, desktop and notebook 
computer's market. Such processors have been able to decrease power consump-
tion and thermal challenges that designers face within single core processors. In 
order to improve multi-core processor’s performance, designers should choose 
the best set of cores based on power consumption and execution delay. In this 
paper, we study several architectures that are composed of a configurable num-
ber of cores. We use three cores with different levels of performance and power 
consumption. Then, we implement different configurations of a multi-core proc-
essor. In each configuration, which has a different set of cores, we run bench-
marks with various numbers of simultaneous threads, from 1 up to 32. Power 
consumption and execution delay of each configuration has been measured. It 
has been shown that the best configuration is a heterogeneous multi-core proces-
sor that is composed of 16 cores in our bounded area. Then, we examined vari-
ous ways that threads can be assigned to different cores in the best configuration. 
It is shown that for serial workloads the best choice is to use high performance 
cores, but in parallel workloads that consist of multiple threads, a mixture of 
cores with different performance levels gives the best performance. 

Keywords: Heterogeneous multi-core processor, power consumption, execu-
tion delay, multithreaded benchmark. 

1   Introduction 

The constant decrease in feature size leads to an increase on transistor count on chip 
area which enables processor architects to improve performance by designing more 
complex processors. This amount of transistors on the chip area increases power con-
sumption and produces more heat. These two factors, i.e. power consumption and 
thermal management, are the most important design limitation factors today [7,8,9]. 

From computational point of view, we have already extracted the easy ILP (in-
struction-level parallelism) through techniques like superscalar processing, out-of-
order processing, etc.. The ILP that is left is difficult to exploit. However, technology 
keeps making transistors available to us at the rate predicted by Moore's Law [11]. 
We have reached a point where we have more transistors available than we know how 
to make effective use of in a conventional monolithic processor environment. 
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There is diversity in workloads that a typical processor is expected to run. This di-
versity can be due to diversity among applications or different threads of the same 
application. It can also be due to diversity across varying program phases within an 
application or varying processor load. Instead of using all the transistors to construct a 
monolithic processor targeting high single-thread performance, we can use the transis-
tors to construct multiple simpler cores where each core can execute a program (or a 
thread of execution) [1]. A multicore processor provides increased total computational 
capability on a single chip without requiring a complex microarchitecture. 

As a result, simple multicore processors have better performance per watt and area 
characteristics than complex single-core processors [10]. Multicore processors have 
better adaptability whit workloads and tune the number of active cores according to 
different workloads or different phases of a single application. This adaptability leads 
to consume less power and reduce temperature of the chip. 

In this paper we implement three cores, each with a different level of performance, 
power and area. We use different composition of these cores on our bounded area and 
show delay and power level of each configuration. After finding the best composition 
of cores, we study the effect of different ways that threads can be assigned to different 
cores.   

Many works have appeared in the literature exploring the design space of multi-
core processors from the point of view of different metrics and application domains. 

Huh et al. [2] evaluate the impact of several design factors on the performance. The 
authors discuss the interactions of core complexity, cache hierarchy, and available 
off-chip bandwidth. The paper focuses on a workload composed of single-threaded 
applications. It is shown that out-of-order cores are more effective than in-order ones. 

In [3], Kumar et al. propose a single-ISA heterogeneous multi-core architecture as 
a mechanism to reduce processor power dissipation. They assume a single chip con-
taining a set of diverse cores that target different performance levels and consume 
different levels of power. They describe an example architecture with five cores of 
varying performance and complexity. 

In [4], Jouppi et al. demonstrate that single-ISA heterogeneous multi-core architec-
ture can provide significantly higher performance in the same area than a conven-
tional multiprocessor chip. It does so by matching the various jobs of a diverse 
workload to the various cores. Authors show that this type of architecture covers a 
spectrum of workloads particularly well, providing high single-thread performance 
when thread parallelism is low, and high throughput when thread parallelism is high. 

In [5] Monchiero et al. target an architecture composed of a configurable number 
of cores, a memory hierarchy consisting of private L1 and L2, and a shared bus inter-
connect. They explore the design space varying the number of cores, L2 cache size 
and processor complexity, showing the behavior of the different configura-
tions/applications with respect to performance, energy consumption and temperature. 

The rest of paper is organized as follows. In section 2 we discuss our design meth-
odology and define the details of microarchitecture, simulator and benchmarks. In 
section 3 we introduce simulation results. Finally, Section 4 concludes the paper. 
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2   Methodology 

2.1   Microarchitecture  

We have implemented three cores with different levels of performance, power and 
different chip areas. Our cores are similar to Alpha processors (alpha21064 [12], 
alpha21164 [13] and alpha21264 [14]). The core characteristics are similar to the ones 
used in [3]. Table 1 summarizes these characteristics. We have changed the issue-
width of EV5 from 2 to 4 and its instruction and data cache size from 8 KB to 16 KB, 
in order to increase performance distance between EV4 and EV5. More than half of 
the chip area was considered for L2 cache and interconnections. In the remainder of 
chip area we can put four EV6 (alpha21264), or twenty EV5 (alpha21164), or forty 
EV4 (alpha21064), or a different mixture of these cores. We consider that all cores 
are implemented in 100 nm technology and run at 2.1 GHz. 

A large L2 cache (4 MB) was used to be shared between cores. The L2 cache is a 4 
way set associative with a block size of 32 bytes. 

Table 1. Characteristics of the cores 

core EV4 EV5 EV6

Issue-width 2 ( in-order ) 4 ( in-order ) 6 (OOO )
I-cache 8 KB , DM 16 KB , 2 way 64 KB , 4way
D-cache 8 KB , DM 16 KB , 2 way 64 KB , 4way
B-predictor static hybrid hybrid
Area (mm2) 2.5 5 25
Power (watt) 5 7.5 20

2.2   Simulator and Benchmarks 

We used the SESC [15] simulator which is a cycle accurate architectural simulator. It 
models a very wide set of architectures such as single processors, CMPs and thread 
level speculation. For simulating heterogeneous multi-core processors, we modified 
the configuration file and added different core configurations. 

We have used four scientific/technical parallel workloads from splash2 [6]. These 
workloads consist of two applications and two computational kernels. The kernels are 
FFT and LU decomposition. The two applications that we have used are Barnes and 
Ocean. Table 2 lists the benchmarks that we selected and the input parameters of each 
one. 

3   Experimental Results 

3.1   Different Compositions of Cores 

In this section we present the simulation results for different core configurations 
of our processor. We show execution delay (msec), power and energy-delay of our 
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simulation results. The first part of Fig. 1 shows the execution delay for some con-
figurations of the processor for ocean benchmark. 

Note that 2.6.8 means our processor has two EV6, six EV5, eight EV4 cores. EV6 
and EV4 are the highest performance and the lowest performance cores respectively. 
Also there are some assumptions in our simulation:  

Number of simultaneous threads is considered to be power of two. 
Number of simultaneous threads that run on cores must be less than or equal to the 

number of cores. 
If the number of simultaneous threads is less than the number of cores, we assume 

that extra cores are off and don't consume power. 
The power that is consumed by cores is reported in the results, not total chip 

power. 
We have used static scheduling. The cores with higher performance have priority 

for usage to cores with lower performance (when threads are assigned to cores), so 
threads are first assigned to high performance cores and then, if there are any left, 
they are assigned to other cores i.e. if we run 8 threads on 2.6.8 multi-core processor, 
2 threads are assigned to two EV6 and 6 of them run on six EV5. 

Table 2. Benchmarks and input parameters 

Bench. Description input 
FFT Perform 1D fast Fourier transform using six-step FFT 

method 
m = 16 
l = 5 
n = 1024 

Ocean This application studies the role of eddy and boundary 
currents in   influencing large-scale ocean movements.   

N = 130 

LU Parallel dense blocked LU factorization n = 1000 
b = 64 

Barnes implements the Barnes-Hut  method to simulate the inter-
action of a system of bodies 

nbody = 64 
seed = 45 
fleaves = 5.0 

There are three homogeneous multi-core processors in this figure (e.g. 4.0.0 that 
consists of four EV6 cores, 0.20.0 that consists of twenty EV5 cores and 0.0.40 that 
consists of forty EV4 cores). Other configurations implement heterogeneous multi-
core processors with two or three different cores. 

Note that our simulation is limited with this fact that the number of workload's 
threads must be power of 2 and less than the number of cores that we implement in 
our design. Therefore we can't show execution delay of 2.6.8 configuration, which has 
16 cores, for the benchmark that has 32 simultaneous threads. But we can see that 
1.0.31 configuration has the best execution delay for 32thread- benchmark in all fig-
ures. If we run a serial workload on a low performance core, we will get the worst 
delay. 
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Fig. 1. Execution-Delay, energy and energy-delay product for ocean benchmark for different 
thread numbers 

The middle part of Fig. 1 shows the amount of power that is consumed in different 
configurations for ocean benchmark. It is clear that if we run the application’s threads 
on high performance cores, we must pay the penalty that is more power consumption. 
Note that the total power consumption is increased with the number of simultaneous 
threads, because more cores are used simultaneously.    

The last part of this figure shows Energy-Delay product diagrams. It can be seen 
that 0.0.40 (homogeneous multi-core) always has the worst Energy-Delay curve. The 
best configurations are 2.6.8 and 1.0.31 for workloads that have 32 simultaneous 
threads.            

Depending on the goal of the design; the scheduler can use selected cores to reach 
the best result. For example consider that we implement the 2.6.8 configuration for 
multi-core processor in an embedded system and the amount of power that is con-
sumed is critical. Scheduler can run multithreaded workload on the low performance 
cores that consume less power. If we run 8 threads on 8 EV4 cores in 2.6.8 configura-
tion, the power that is consumed is 1/3 of when we run 8 threads on 2 EV6 and 6 EV5 
cores. If the goal of design is to reach the best execution delay, the threads must run 
on high performance cores.     
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Heterogeneous multi-core processors are suitable for systems that have variable 
goals in their life time. For example embedded systems can have multiple goals, de-
pending on environmental or operational situations. Reducing power or execution 
delay or both of them can be such system’s goals. In these systems heterogeneous 
multi-core processors have the best compatibility with these goals, and scheduler can 
decide that which cores be used to run the threads. 

We implemented many other possible configurations. We found that 2.6.8 configu-
ration still has the best performance and some other configurations have performance 
near to that. For example 2.4.12 and 2.5.10 have performances near 2.6.8 and 3.5.0 
has the best Energy-Delay product. Other benchmarks shown in Table 2 have also 
been used in the experiments and similar results have been achieved. 

3.2   Thread Assignment Policy 

In this section we choose the configuration that had the best performance in previous 
section, and study the effect of different thread assignment policies. We ran different 
number of simultaneous threads (from 1 thread to 8 threads) on different cores and 
compared the execution delay, power and energy-delay of each simulation result. We 
found the best assignment for each number of threads from the execution delay, 
power and energy-delay aspects.  

Fig. 2. The 2.6.8 configuration with 8 simultaneous threads 
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Fig. 2 shows the simulation results for the workload that consists of 8 threads. This 
figure is composed of three parts that represent power consumption, delay and en-
ergy-delay product. The threads that run in each group of cores are shown in brackets. 
For example (2 . 6 [6] . 8 [2]) configuration means that our workload has eight threads 
and six of them run on six EV5 and other two threads run on two EV4 cores. 

In this experiment we assume 8 threads are available to be run on cores. A smart 
scheduler that uses the best cores to execute the workload can save both power and 
time. For example, consider two configurations. The first one is 2 [2] .6 [6] .8 and the 
second is 2 .6 [6] .8 [2]. The first configuration's energy-delay is 29.5% better than 
second configuration, but its power consumption is two times worse. Also in second 
configuration, we can keep high performance cores (two EV6 cores) for serial jobs. 

In another example we compare the first configuration of previous example with 2 
[2] .6 [2] .8 [4]. Both of them have nearly the same delay, power and energy-delay 
product. Note that in the first configuration eight EV4 cores remain idle in processor 
that has the worst delay, but in the second configuration we still have four EV5 and 
four EV4 cores, that have much better performance than eight EV4. It is concluded 
that for this situation 2 [1]. 6 [3]. 8[4] configuration is the best, because half of the 
number of each core are used, and other half remain idle, and scheduler has a better 
choice for other loads. 

Workloads that have high parallelism give more choice to scheduler to assign 
threads to different cores, and scheduler can choose the best configuration to reach to 
the goal of the design. 

4   Conclusions 

In this work we considered a bounded chip area and implemented a multi-core proc-
essor whit different set of cores. We used three cores with different levels of perform-
ance. Our results showed that a processor that consists of all three cores gives the best 
delay and energy-delay result. We also found that if energy-delay is the measure of 
performance, the best collection of cores to execute threads is a mixture of all kinds of 
cores. 

Other design parameters that affect performance of CMPs are L2 cache configura-
tion that is shared between cores, interconnection network, and a smart scheduler that 
can explore different phases of application and predicts the demand of next phase in 
order to choose the best set of cores to execute the workload.  
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