
The Effect of Core Number and Core Diversity on
Power and Performance in Multicore Processors

A. Zolfaghari Jooya and M. Soryani

Computer Science Dep., Iran University of Science and Technology,
Tehran, Iran

al_zolfaghari@comp.iust.ac.ir,
soryani@iust.ac.ir

Abstract. Today, multi-core processors dominate server, desktop and notebook
computer's market. Such processors have been able to decrease power consump-
tion and thermal challenges that designers face within single core processors. In
order to improve multi-core processor’s performance, designers should choose
the best set of cores based on power consumption and execution delay. In this
paper, we study several architectures that are composed of a configurable num-
ber of cores. We use three cores with different levels of performance and power
consumption. Then, we implement different configurations of a multi-core proc-
essor. In each configuration, which has a different set of cores, we run bench-
marks with various numbers of simultaneous threads, from 1 up to 32. Power
consumption and execution delay of each configuration has been measured. It
has been shown that the best configuration is a heterogeneous multi-core proces-
sor that is composed of 16 cores in our bounded area. Then, we examined vari-
ous ways that threads can be assigned to different cores in the best configuration.
It is shown that for serial workloads the best choice is to use high performance
cores, but in parallel workloads that consist of multiple threads, a mixture of
cores with different performance levels gives the best performance.

Keywords: Heterogeneous multi-core processor, power consumption, execu-
tion delay, multithreaded benchmark.

1 Introduction

The constant decrease in feature size leads to an increase on transistor count on chip
area which enables processor architects to improve performance by designing more
complex processors. This amount of transistors on the chip area increases power con-
sumption and produces more heat. These two factors, i.e. power consumption and
thermal management, are the most important design limitation factors today [7,8,9].

From computational point of view, we have already extracted the easy ILP (in-
struction-level parallelism) through techniques like superscalar processing, out-of-
order processing, etc.. The ILP that is left is difficult to exploit. However, technology
keeps making transistors available to us at the rate predicted by Moore's Law [11].
We have reached a point where we have more transistors available than we know how
to make effective use of in a conventional monolithic processor environment.

252 A. Zolfaghari Jooya and M. Soryani

There is diversity in workloads that a typical processor is expected to run. This di-
versity can be due to diversity among applications or different threads of the same
application. It can also be due to diversity across varying program phases within an
application or varying processor load. Instead of using all the transistors to construct a
monolithic processor targeting high single-thread performance, we can use the transis-
tors to construct multiple simpler cores where each core can execute a program (or a
thread of execution) [1]. A multicore processor provides increased total computational
capability on a single chip without requiring a complex microarchitecture.

As a result, simple multicore processors have better performance per watt and area
characteristics than complex single-core processors [10]. Multicore processors have
better adaptability whit workloads and tune the number of active cores according to
different workloads or different phases of a single application. This adaptability leads
to consume less power and reduce temperature of the chip.

In this paper we implement three cores, each with a different level of performance,
power and area. We use different composition of these cores on our bounded area and
show delay and power level of each configuration. After finding the best composition
of cores, we study the effect of different ways that threads can be assigned to different
cores.

Many works have appeared in the literature exploring the design space of multi-
core processors from the point of view of different metrics and application domains.

Huh et al. [2] evaluate the impact of several design factors on the performance. The
authors discuss the interactions of core complexity, cache hierarchy, and available
off-chip bandwidth. The paper focuses on a workload composed of single-threaded
applications. It is shown that out-of-order cores are more effective than in-order ones.

In [3], Kumar et al. propose a single-ISA heterogeneous multi-core architecture as
a mechanism to reduce processor power dissipation. They assume a single chip con-
taining a set of diverse cores that target different performance levels and consume
different levels of power. They describe an example architecture with five cores of
varying performance and complexity.

In [4], Jouppi et al. demonstrate that single-ISA heterogeneous multi-core architec-
ture can provide significantly higher performance in the same area than a conven-
tional multiprocessor chip. It does so by matching the various jobs of a diverse
workload to the various cores. Authors show that this type of architecture covers a
spectrum of workloads particularly well, providing high single-thread performance
when thread parallelism is low, and high throughput when thread parallelism is high.

In [5] Monchiero et al. target an architecture composed of a configurable number
of cores, a memory hierarchy consisting of private L1 and L2, and a shared bus inter-
connect. They explore the design space varying the number of cores, L2 cache size
and processor complexity, showing the behavior of the different configura-
tions/applications with respect to performance, energy consumption and temperature.

The rest of paper is organized as follows. In section 2 we discuss our design meth-
odology and define the details of microarchitecture, simulator and benchmarks. In
section 3 we introduce simulation results. Finally, Section 4 concludes the paper.

The Effect of Core Number and Core Diversity on Power and Performance 253

2 Methodology

2.1 Microarchitecture

We have implemented three cores with different levels of performance, power and
different chip areas. Our cores are similar to Alpha processors (alpha21064 [12],
alpha21164 [13] and alpha21264 [14]). The core characteristics are similar to the ones
used in [3]. Table 1 summarizes these characteristics. We have changed the issue-
width of EV5 from 2 to 4 and its instruction and data cache size from 8 KB to 16 KB,
in order to increase performance distance between EV4 and EV5. More than half of
the chip area was considered for L2 cache and interconnections. In the remainder of
chip area we can put four EV6 (alpha21264), or twenty EV5 (alpha21164), or forty
EV4 (alpha21064), or a different mixture of these cores. We consider that all cores
are implemented in 100 nm technology and run at 2.1 GHz.

A large L2 cache (4 MB) was used to be shared between cores. The L2 cache is a 4
way set associative with a block size of 32 bytes.

Table 1. Characteristics of the cores

core EV4 EV5 EV6

Issue-width 2 (in-order) 4 (in-order) 6 (OOO)
I-cache 8 KB , DM 16 KB , 2 way 64 KB , 4way
D-cache 8 KB , DM 16 KB , 2 way 64 KB , 4way
B-predictor static hybrid hybrid
Area (mm2) 2.5 5 25
Power (watt) 5 7.5 20

2.2 Simulator and Benchmarks

We used the SESC [15] simulator which is a cycle accurate architectural simulator. It
models a very wide set of architectures such as single processors, CMPs and thread
level speculation. For simulating heterogeneous multi-core processors, we modified
the configuration file and added different core configurations.

We have used four scientific/technical parallel workloads from splash2 [6]. These
workloads consist of two applications and two computational kernels. The kernels are
FFT and LU decomposition. The two applications that we have used are Barnes and
Ocean. Table 2 lists the benchmarks that we selected and the input parameters of each
one.

3 Experimental Results

3.1 Different Compositions of Cores

In this section we present the simulation results for different core configurations
of our processor. We show execution delay (msec), power and energy-delay of our

254 A. Zolfaghari Jooya and M. Soryani

simulation results. The first part of Fig. 1 shows the execution delay for some con-
figurations of the processor for ocean benchmark.

Note that 2.6.8 means our processor has two EV6, six EV5, eight EV4 cores. EV6
and EV4 are the highest performance and the lowest performance cores respectively.
Also there are some assumptions in our simulation:

Number of simultaneous threads is considered to be power of two.
Number of simultaneous threads that run on cores must be less than or equal to the

number of cores.
If the number of simultaneous threads is less than the number of cores, we assume

that extra cores are off and don't consume power.
The power that is consumed by cores is reported in the results, not total chip

power.
We have used static scheduling. The cores with higher performance have priority

for usage to cores with lower performance (when threads are assigned to cores), so
threads are first assigned to high performance cores and then, if there are any left,
they are assigned to other cores i.e. if we run 8 threads on 2.6.8 multi-core processor,
2 threads are assigned to two EV6 and 6 of them run on six EV5.

Table 2. Benchmarks and input parameters

Bench. Description input
FFT Perform 1D fast Fourier transform using six-step FFT

method
m = 16
l = 5
n = 1024

Ocean This application studies the role of eddy and boundary
currents in influencing large-scale ocean movements.

N = 130

LU Parallel dense blocked LU factorization n = 1000
b = 64

Barnes implements the Barnes-Hut method to simulate the inter-
action of a system of bodies

nbody = 64
seed = 45
fleaves = 5.0

There are three homogeneous multi-core processors in this figure (e.g. 4.0.0 that
consists of four EV6 cores, 0.20.0 that consists of twenty EV5 cores and 0.0.40 that
consists of forty EV4 cores). Other configurations implement heterogeneous multi-
core processors with two or three different cores.

Note that our simulation is limited with this fact that the number of workload's
threads must be power of 2 and less than the number of cores that we implement in
our design. Therefore we can't show execution delay of 2.6.8 configuration, which has
16 cores, for the benchmark that has 32 simultaneous threads. But we can see that
1.0.31 configuration has the best execution delay for 32thread- benchmark in all fig-
ures. If we run a serial workload on a low performance core, we will get the worst
delay.

The Effect of Core Number and Core Diversity on Power and Performance 255

Fig. 1. Execution-Delay, energy and energy-delay product for ocean benchmark for different
thread numbers

The middle part of Fig. 1 shows the amount of power that is consumed in different
configurations for ocean benchmark. It is clear that if we run the application’s threads
on high performance cores, we must pay the penalty that is more power consumption.
Note that the total power consumption is increased with the number of simultaneous
threads, because more cores are used simultaneously.

The last part of this figure shows Energy-Delay product diagrams. It can be seen
that 0.0.40 (homogeneous multi-core) always has the worst Energy-Delay curve. The
best configurations are 2.6.8 and 1.0.31 for workloads that have 32 simultaneous
threads.

Depending on the goal of the design; the scheduler can use selected cores to reach
the best result. For example consider that we implement the 2.6.8 configuration for
multi-core processor in an embedded system and the amount of power that is con-
sumed is critical. Scheduler can run multithreaded workload on the low performance
cores that consume less power. If we run 8 threads on 8 EV4 cores in 2.6.8 configura-
tion, the power that is consumed is 1/3 of when we run 8 threads on 2 EV6 and 6 EV5
cores. If the goal of design is to reach the best execution delay, the threads must run
on high performance cores.

256 A. Zolfaghari Jooya and M. Soryani

Heterogeneous multi-core processors are suitable for systems that have variable
goals in their life time. For example embedded systems can have multiple goals, de-
pending on environmental or operational situations. Reducing power or execution
delay or both of them can be such system’s goals. In these systems heterogeneous
multi-core processors have the best compatibility with these goals, and scheduler can
decide that which cores be used to run the threads.

We implemented many other possible configurations. We found that 2.6.8 configu-
ration still has the best performance and some other configurations have performance
near to that. For example 2.4.12 and 2.5.10 have performances near 2.6.8 and 3.5.0
has the best Energy-Delay product. Other benchmarks shown in Table 2 have also
been used in the experiments and similar results have been achieved.

3.2 Thread Assignment Policy

In this section we choose the configuration that had the best performance in previous
section, and study the effect of different thread assignment policies. We ran different
number of simultaneous threads (from 1 thread to 8 threads) on different cores and
compared the execution delay, power and energy-delay of each simulation result. We
found the best assignment for each number of threads from the execution delay,
power and energy-delay aspects.

Fig. 2. The 2.6.8 configuration with 8 simultaneous threads

The Effect of Core Number and Core Diversity on Power and Performance 257

Fig. 2 shows the simulation results for the workload that consists of 8 threads. This
figure is composed of three parts that represent power consumption, delay and en-
ergy-delay product. The threads that run in each group of cores are shown in brackets.
For example (2 . 6 [6] . 8 [2]) configuration means that our workload has eight threads
and six of them run on six EV5 and other two threads run on two EV4 cores.

In this experiment we assume 8 threads are available to be run on cores. A smart
scheduler that uses the best cores to execute the workload can save both power and
time. For example, consider two configurations. The first one is 2 [2] .6 [6] .8 and the
second is 2 .6 [6] .8 [2]. The first configuration's energy-delay is 29.5% better than
second configuration, but its power consumption is two times worse. Also in second
configuration, we can keep high performance cores (two EV6 cores) for serial jobs.

In another example we compare the first configuration of previous example with 2
[2] .6 [2] .8 [4]. Both of them have nearly the same delay, power and energy-delay
product. Note that in the first configuration eight EV4 cores remain idle in processor
that has the worst delay, but in the second configuration we still have four EV5 and
four EV4 cores, that have much better performance than eight EV4. It is concluded
that for this situation 2 [1]. 6 [3]. 8[4] configuration is the best, because half of the
number of each core are used, and other half remain idle, and scheduler has a better
choice for other loads.

Workloads that have high parallelism give more choice to scheduler to assign
threads to different cores, and scheduler can choose the best configuration to reach to
the goal of the design.

4 Conclusions

In this work we considered a bounded chip area and implemented a multi-core proc-
essor whit different set of cores. We used three cores with different levels of perform-
ance. Our results showed that a processor that consists of all three cores gives the best
delay and energy-delay result. We also found that if energy-delay is the measure of
performance, the best collection of cores to execute threads is a mixture of all kinds of
cores.

Other design parameters that affect performance of CMPs are L2 cache configura-
tion that is shared between cores, interconnection network, and a smart scheduler that
can explore different phases of application and predicts the demand of next phase in
order to choose the best set of cores to execute the workload.

References

1. Kumar, R.: Holistic Design for Multi-core Architectures. PhD thesis, university of Califor-
nia, san diego (2006)

2. Huh, J., Burger, D., Keckler, S.: Exploring the design space of future cmps. In: PACT
2001: Proceedings of the 10th International Conference on Parallel Architectures and
Compilation Techniques, pp. 199–210, Washington, DC, USA (2001)

3. Kumar, R., Farkas, K., Jouppi, N.P., Ranganathan, P., Tullsen, D.M.: Single-ISA Hetero-
geneous Multi-Core Architectures:The Potential for Processor Power Reduction. In: Pro-
ceedings of the 36th International Symposium on Microarchitecture (Decemeber 2003)

258 A. Zolfaghari Jooya and M. Soryani

4. Jouppi, N.P., Tullsen, D.M., Kumar, R., Ranganathan, P., Farkas, K.I.: Single-ISA Hetero-
geneous Multi-Core Architectures for Multithreaded Workload Performance. In: Proceed-
ings of the 31st International Symposium on Computer Architecture (2004)

5. Monchiero, M., Canal, R., González, A.: Design Space Exploration for Multicore Archi-
tectures: A Power/Performance/Thermal View. In: ICS 2006 (2005)

6. Woo, S.C., Ohara, M., Torrie, E., Singh, J.P., Gupta, A.: The SPLASH-2 Programs: Char-
acterization and Methodological Considerations. In: Proceedings of the 22nd International
Symposium on Computer Architecture, Santa Margherita Ligure, Italy, pp. 24–36. ACM
Press, New York (1995)

7. Brooks, D., Martonosi, M.: Dynamic Thermal Management for High-Performance Micro-
processors. In: Proceedings of the 7th International Symposium on High-Performance
Computer Architecture, Monterrey, Mexico (January 2001)

8. Brooks, D., et al.: Power-aware Microarchitecture: Design and Modeling Challenges for
the next-generation microprocessors. IEEE Micro 20(6), 26–44 (2000)

9. Flynn, M.J., Hung, P., Rudd, K.: Deep-Submicron Microprocessor Design Issues. IEEE
Micro 19(4), 11–22 (1999)

10. Balakrishnan, S., Rajwar, R.: The Impact of Performance Asymmetry in Emerging Multi-
core Architectures. In: Proceedings of the 32nd International Symposium on Computer Ar-
chitecture ISCA 2005 (2005)

11. Moore, G.: Cramming more components onto integrated circuits 38 (1965)
12. Alpha 21064 and Alpha 21064A: Hardware reference Manual. Digital Equipment Corpo-

ration (1992)
13. Alpha 21164 Microprocessor: Hardware Reference Manual. Digital Equipment Corpora-

tion (1998)
14. Alpha 21264/EV6 Microprocessor: Hardware Reference Manual. Compaq Corporation

(1998)
15. Renau, J., Fraguela, B., Tuck, J., Liu, W., Prvulovic, M., Ceze, L., Sarangi, S., Sack, P.,

Strauss, K., Montesinos, P.: SESC simulator (January 2005),
http://sesc.sourceforge.net

	The Effect of Core Number and Core Diversity on Power and Performance in Multicore Processors
	Introduction
	Methodology
	Microarchitecture
	Simulator and Benchmarks

	Experimental Results
	Different Compositions of Cores
	Thread Assignment Policy

	Conclusions
	References

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (Gray Gamma 2.2)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (ISO Coated)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Error
 /CompatibilityLevel 1.3
 /CompressObjects /Off
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJDFFile false
 /CreateJobTicket false
 /DefaultRenderingIntent /Default
 /DetectBlends true
 /DetectCurves 0.1000
 /ColorConversionStrategy /sRGB
 /DoThumbnails true
 /EmbedAllFonts true
 /EmbedOpenType false
 /ParseICCProfilesInComments true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 524288
 /LockDistillerParams true
 /MaxSubsetPct 100
 /Optimize true
 /OPM 1
 /ParseDSCComments true
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveDICMYKValues true
 /PreserveEPSInfo true
 /PreserveFlatness true
 /PreserveHalftoneInfo false
 /PreserveOPIComments false
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts false
 /TransferFunctionInfo /Remove
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /CropColorImages true
 /ColorImageMinResolution 150
 /ColorImageMinResolutionPolicy /OK
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 600
 /ColorImageDepth 8
 /ColorImageMinDownsampleDepth 1
 /ColorImageDownsampleThreshold 1.01667
 /EncodeColorImages true
 /ColorImageFilter /FlateEncode
 /AutoFilterColorImages false
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /ColorImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasGrayImages false
 /CropGrayImages true
 /GrayImageMinResolution 150
 /GrayImageMinResolutionPolicy /OK
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 600
 /GrayImageDepth 8
 /GrayImageMinDownsampleDepth 2
 /GrayImageDownsampleThreshold 1.01667
 /EncodeGrayImages true
 /GrayImageFilter /FlateEncode
 /AutoFilterGrayImages false
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /GrayImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasMonoImages false
 /CropMonoImages true
 /MonoImageMinResolution 1200
 /MonoImageMinResolutionPolicy /OK
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 1200
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 2.00000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /CheckCompliance [
 /None
]
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile (None)
 /PDFXOutputConditionIdentifier ()
 /PDFXOutputCondition ()
 /PDFXRegistryName (http://www.color.org)
 /PDFXTrapped /False

 /SyntheticBoldness 1.000000
 /Description <<
 /DEU ()
 >>
>> setdistillerparams
<<
 /HWResolution [2400 2400]
 /PageSize [595.000 842.000]
>> setpagedevice

