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Abstract. The number of processing cores within computing nodes which are 
used in current clustered systems, are growing up rapidly. Despite this trend, the 
number of available network interfaces in such nodes almost has been remained 
unchanged. This issue can lead to high usage of network interface in many 
workloads, especially in workloads which have high inter-process communica-
tions. As a result, network interface would become a performance bottleneck 
and can degrade the performance drastically. The goal of this paper is to intro-
duce a new process mapping algorithm in multi-core clusters aimed to reducing 
network interface contention and improving the performance of running parallel 
applications. Comparison of the new algorithm with other well-known methods 
in synthetic and real workloads indicates that the new strategy can gain 5% to 
90% performance improvement in heavy communicating workloads. 

1   Introduction 

Parallel processing is one of the basic approaches to obtain high processing power. 
This power is necessary to run many scientific and economic applications which are 
known as Grand Challenge Applications (GCA). In this regard, various architectures 
have been introduced. Of these architectures, cluster computing has gained more pop-
ularity such that based on last published issues in 2011 [1], up to 82% of 500 top su-
percomputers in the world, used this architecture. Besides, recent advancements in 
multi-core processor technology have made these processors an excellent choice to 
use in clustered nodes. Magny-cours series of AMD Opteron and Westmere series of 
Intel Xeon which have 12 and 10 cores per chip respectively are some examples of 
multi-core processors which are becoming common in recent computing nodes. 

Although multi-core processors, can improve computational capability, but they 
raise some challenges. The main challenge in this regard, is the contention of various 
cores for using shared resources like memory and buses. In the presence of such con-
tention, shared resources can be performance bottleneck and can degrade the perfor-
mance of running parallel applications drastically. Consequently, efficient execution 
of parallel applications in such systems needs more deliberations of these systems. In 
doing so, there are lots of studies including [2-6] which provide insights into the con-
ditions in which efficient performance of clustered systems can be gained. 

When multi-core computing nodes are used individually, memories and buses are 
the main shared resources that contention on them can adversely affect the perfor-
mance. But when these nodes are connected together to form a clustered system, net-
work interfaces are raised as another important resources. This is because various 
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processes of a parallel job (when placed on different nodes) use these interfaces for 
communications and synchronizations. In spite of considerable growth in the number 
of processing cores within computing nodes, the number of available network inter-
faces almost has been remained unchanged and this number is 1 or 2 for most sys-
tems. This issue can lead to high usage of network interfaces in many workloads, 
especially in workloads which have high inter-process communications. Since net-
work interface port can service just one request at a time, other communication re-
quests received from different cores must be queued to service later. The more cores 
in a node, the more requests for network interface. As a result, waiting time of mes-
sages at interface queue will be increased. This issue can finally prolong the execution 
time of parallel programs. According to these notes, if we could distribute parallel 
processes in available computing nodes in a way that requests arriving in each net-
work interface be decreased, queuing time will also be decreased and we can expect 
performance improvement. In doing so, our goal in this paper, is to present a solution 
for mapping parallel processes to multi-core clusters in order to reduce network inter-
face contention. After presenting our proposed mapping strategy, we will compare it 
with some well-known methods and it is shown that the new mapping method can ob-
tain 5% to 90% performance improvement based on used scenarios. 

2   Related Works 

Various methods have been proposed for mapping parallel processes to processing 
cores. Of these methods, Blocked and Cyclic are two common approaches which are 
already investigated in [7-8]. In Blocked method, the mapping is started by selecting a 
computing node and assigning parallel processes to its free cores one-by-one. When 
there is no free core, another node will be used and this procedure is repeated until the 
end of assignment. In Cyclic method, parallel processes are distributed among compu-
ting nodes as Round Robin. As a result, maximum number of nodes and minimum 
number of cores in each node is used in this method (in contrast to Blocked method 
which uses minimum number of nodes and maximum number of cores in each node). 

Although Blocked and Cyclic methods are used in many situations as a default method, 
but these approaches have little intelligence and do not consider the volume of communi-
cations between processes. Because of this issue, other techniques have been proposed 
which are more intelligent than Blocked and Cyclic. Some of these methods are [9-13]. 
Proposed mapping algorithm in these studies is based on graph partitioning techniques. 
The main idea in these techniques is to find processes that communicate to each other fre-
quently and to map them near each other (e.g. place them in the same node). By this way, 
those processes can benefit from higher bandwidth of memory compared to network inter-
face bandwidth. In order to do this, Application Graph (AG) and Cluster Topology Graph 
(CTG) are established and then, it is tried to find an efficient mapping from AG to CTG. 
In AG, vertices represent parallel processes and edges represent communications between 
processes. In CTG, vertices and edges represent processing cores and available bandwidth 
between them respectively. Since graph mapping problem is known as NP problem, some 
heuristics have been introduced which are based on graph partitioning approaches. Dual 
recursive bipartitioning (DRB) and K-way graph partitioning are two common heuristics. 
In DRB, AG is divided into two subgroups such that processes which communicate to 
each other frequently will be grouped in the same subgroup, but processes which commu-
nicate to each other infrequently, will be placed in different subgroups. By ‘frequently’ we 
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mean the total volume of data exchanged between each pair of processes. The CTG is also 
divided into two subgroups in the same way as done with AG. Then, each subgroup of AG 
is assigned to the peer subgroup of CTG. This operation is repeated on each subgroup re-
cursively until one process in AG or one core in CTG remaines. K-way graph partitioning 
is the same with DRB except that instead of two groups, graphs are divided into K groups. 

Although graph partitioning techniques try to improve performance by mapping 
frequently communicating processes near each other, but when we try to put such 
processes near themselves, some shared resources can became performance bottle-
necks and these methods are oblivious to this issue. Studies that propose a mapping 
approach to mitigate contention problem are very limited. Of these studies, we can 
point to [14-16]. [14] Introduces a mapping algorithm to avoid congestion on Torus 
interconnection networks. But this study does not consider congestion problem on 
network interface. In [15] the problem of contention on network interface is investi-
gated. This study tries to put a combination of parallel jobs which have high inter-
node communications and low inter-node communications in one node. By this way, 
network interface contention is alleviated while maximum number of processing 
cores is used in an efficient way. However this study does not provide a systematic 
algorithm to use in all scenarios and under every condition. [16] uses a scheduling 
method to mitigate contention and does not benefit from an intelligent mapping. 

3   Proposed Mapping Algorithm 

In order to reduce network interface contention, the conditions in which contention is 
raised, must be recognized. By determining such conditions, we can present the solu-
tion. If we could accommodate all processes of a parallel job in just one computing 
node, there will be no usage of network interface and hence, there is no contention. 
But when the number of processes is high, or the number of free cores in computing 
nodes is low, parallel processes must be placed in more than one node inevitably. In 
this case, high volume of inter-process communications can raise the contention on 
network interface and hence, degradation of performance will be occurred. To tackle 
this problem, we should determine a threshold on the number of processes which re-
side in a node and have high inter-node communication demands. This means that we 
should distribute processes among available nodes in order to reduce network requests 
arriving to each interface. Consequently, waiting time at interface queue for inter-
node messages will be decreased. In this paper, we tried to determine an appropriate 
value for threshold using the number of adjacent processes (for each process) and the 
number of available free cores in computing nodes. Fig. 1 shows our mapping algo-
rithm pseudocode. The first step is to separate parallel jobs based on the length of 
messages they send. Since larger messages need more service time, processes which 
send larger messages should use intra-node communications to benefit from high 
bandwidth of memory. We categorized messages into 3 groups: large messages (1MB 
or higher), medium messages (2KB to 1MB), and small messages (2KB or less). 
Based on these categories, we separate parallel jobs. First we select parallel jobs 
which send large messages (step 1), and then, it is the time to select and map jobs 
which send medium and small messages respectively (steps 4,6). If processes of a job 
send messages with different lengths, largest message length is considered for action. 
After partitioning jobs, parallel jobs in each group are sorted (step 2) based on aver-
age number of adjacent processes for each process (Adjavg). Jobs which have more 
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average adjacency are mapped earlier. This is because these jobs may need to distri-
bute between the nodes to have efficient performance. As a result, these jobs should 
be mapped before other jobs to use available capacity of computing nodes. After 
choosing a job to map, processes of this job are sorted based on their communication 
demands and processes which have more communications, are mapped earlier. In 

proposed algorithm, communication demand for process i is calculated by: 
1,

P
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L
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in which, Lij is the length of messages sent from process i to process j (largest length 
when having different lengths), λij is the rate of sending messages from i to j, and P 
represents number of parallel processes for current job. After determining process 
with most communication demand (given process ‘A’), this process is assigned to a 
node with most free cores. Then, adjacent processes of ‘A’ are sorted based on the 
communication demand between ‘A’ and them, and it is tried to map adjacent 
processes of ‘A’ in the same node as ‘A’. 

Now, it must be noted that if the number of adjacent processes is high, or the num-
ber of available free cores in current node is low, some adjacent processes must be 
mapped to other computing nodes. In such situations, as mentioned earlier, high 

New_Mapping_Algorithm( ) 
Input: Workload graph, Cluster architecture 
Output: Mapping information 
{ 
1. job_pool = select_jobs ( high_length );
2. sort_jobs ( job_pool );
3. while ( job_pool is not empty )

 { 
  crnt_job = select_job ( job_pool ); 
  If ( Adjavg<= FreeCoresavg -1 ) 
     No threshold is determined; 
  Else 

m ax1

_ _

P
p i

i

A d j

A d j
T hresho ld

nu m of nod es
=

⎢ ⎥
⎢ ⎥
⎢ ⎥

= ⎢ ⎥
⎢ ⎥
⎢ ⎥
⎢ ⎥⎣ ⎦

∑  ; 

  sort_process ( crnt_job ); 
  crnt_process = select_process ( crnt_job ); 
  crnt_node = selec_node ( cluster_arch ); 
  crnt_socket = select_socket ( cluster_arch ); 
  map_process ( crnt_process, crnt_node, crnt_socket); 
  sort_adj ( crnt_process ); 
  map_adj_processes ( threshold ); 
 } 
4. job_pool = select_jobs ( medium_length );
5. repeat steps 2,3;
6. job_pool = select_jobs ( small_length );
7. repeat steps 2,3;

} 

Fig. 1. Pseudocode of the proposed mapping algorithm 
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volume of inter-process communications can lead to severe contention on network in-
terface and degrade the performance. So before mapping processes of current job, we 
should determine a threshold on the number of processes which reside in a node and 
use network interface for their inter-node communications. To determine the thre-
shold, we act as follow: If average adjacency for processes is less than or equal to av-
erage number of free cores (FreeCoresavg) in computing nodes (except one processing 
core which is used to place process ‘A’), approximately, we can say that ‘A’ and its 
adjacent processes can reside in just one node and there is no significant inter-node 
communications, probably. In such case, there is no need to determine a threshold. In 
contrast, if average adjacency is higher than the average free cores, some processes 
must be placed out of current node. In this case, threshold is determined by: 
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In eq. 1, a weight (
max

piAdj

Adj
) is assigned to each process. In this weighted value, Adjpi 

represents number of adjacent processes for process pi and Adjmax represents maxi-
mum adjacency between processes. The reason for choosing a weighted threshold is 
because high amount of adjacency makes us determine a threshold. Consequently, 
processes which have more adjacency should have more impact (or weight, as a re-
sult) on selected threshold than others. The weighted value is then divided by the 
number of nodes (num_of_nodes) to distribute processes between all computing 
nodes. It is to be mentioned that although distributing processes between all cluster 
nodes, does not always lead to optimum results, but our experiments show that in 
many scenarios, it can result in efficient performance. An important note about eq. 1 
is that if number of computing nodes is more than parallel processes, the threshold 
will be equal to 0 which is meaningless. In this case, we set the threshold value to 1. 

4   Evaluation of the New Mapping Algorithm 

4.1   Simulation Testbed 

In this paper, we used Omnet++ v4.1 simulator to perform our experiments. The sys-
tem which we considered for simulation, is a multi-core cluster containing 16 compu-
ting nodes which are connected through an intermediate switch. Each computing node 
has 4 sockets and each socket is a 4-core processor, so each node contains 16 
processing cores. The architecture of each node is based on the NUMA1 architecture. 
This means that each socket can access to its local memory (although it can also 
access to remote memories but with more latency). In each node, we used a network 
interface with InfiniBand technology. InfiniBand, is one of the most advanced tech-
nologies which is used to establish high performance clusters. Table 1 lists the para-
meters we used in our simulations. 

1 Non Uniform Memory Access. 
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Table 1. Simulation parameters 

Par ameter V alue

Main memory bandwidth 4GB /s 

R emote memory access latency 10% more than local memory access latency 

Cache bandwidth (for intra-chip communications) Corresponds to A MD Opteron 2352 chip 

Maximum length of common buffer in cache 1MB  

Network interface bandwidth 1GB /s (corresponds to InfiniHost MT 23108 4x) 

Switching latency at intermediate switch 100ns (independent of message length) 

4.2   Experimental Results 

To evaluate the new mapping method, we used synthetic and real workloads. In synthet-
ic workloads, messages which had different lengths and rates were generated. In these 
traffics, we used four different communication patterns between parallel processes. 
These patterns which are based on communication patterns in message passing libraries 
are: Bcast/Scatter, Gather/Reduce, All-to-All and Linear. In Bcast/Scatter, one process 
as the root process broadcasts its messages to other processes and other processes are 
just receiver. In Gather/Reduce, one process as the root process, receives messages from 
other processes and other processes are just senders. In All-to-All, each process sends 
messages to all other processes. In Linear, each process receives messages from a pre-
vious process and sends its messages to a next process (there is a linear communication 
pattern between processes). Tables 2 to 5 show the definition of 4 synthetic workloads 
which each, contains a number of parallel jobs with different communication patterns. 
Real workloads were extracted from communication behavior of NPB2 benchmarks. 
Tables 6 to 9 show the definition of 4 real workloads which each, contains some 
benchmarks with different number of processes and different benchmark classes. 

For performance evaluation, we used sum of the waiting times of messages at serv-
er queues (network interface and memory) as our main metric. We compared our re-
sults with the results obtained from Blocked, Cyclic and DRB methods. Fig. 2 shows 

Table 2. Synt_workload_1 

Message Count Rate Length Pattern No. of Processes Job 
2000 100m/s 64KB All-to-All 64 0 
2000 100m/s 64KB Bcast/Scatter 64 1 
2000 100m/s 64KB Gather/Reduce 64 2 
2000 100m/s 64KB Linear 64 3 

Table 3. Synt_workload_2 

Message Count Rate Length Pattern No. of Processes Job 
2000 10m/s 2MB All-to-All 64 0 
2000 10m/s 2MB Bcast/Scatter 64 1 
2000 10m/s 2MB Gather/Reduce 64 2 
2000 10m/s 2MB Linear 64 3 

2 NAS Parallel Benchmarks. 
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Table 4. Synt_workload_3 

Message Count Rate Length Pattern No. of Processes Job 
2000 10m/s 2MB All-to-All 32 0 
2000 10m/s 2MB Bcast/Scatter 32 1 
2000 10m/s 2MB Gather/Reduce 32 2 
2000 10m/s 2MB Linear 32 3 
2000 10m/s 64KB All-to-All 32 4 
2000 10m/s 64KB Bcast/Scatter 32 5 
2000 10m/s 64KB Gather/Reduce 32 6 
2000 10m/s 64KB Linear 32 7 

Table 5. Synt_workload_4 

Message Count Rate Length Pattern No. of Processes Job 
2000 10m/s 2MB All-to-All 24 0 
2000 10m/s 2MB Bcast/Scatter 24 1 
2000 10m/s 2MB Gather/Reduce 24 2 
2000 10m/s 2MB Linear 24 3 
2000 10m/s 64KB All-to-All 24 4 
2000 10m/s 64KB Bcast/Scatter 24 5 
2000 10m/s 64KB Gather/Reduce 24 6 
2000 10m/s 64KB Linear 24 7 

Table 6. Real_workload_1 

Class Benchmark No. of Processes Job 
C SP 25 0 
C IS 32 1 
B FT 32 2 
B FT 16 3 
C IS 16 4 
C CG 32 5 
B IS 8 6 
C BT 25 7 
B CG 16 8 

Table 7. Real_workload_2 

Class Benchmark No. of Processes Job 
B IS 8 0 
B FT 32 1 
C IS 32 2 
C MG 32 3 
C CG 32 4 
B IS 32 5 
B MG 32 6 
B CG 32 7 
C BT 16 8 

Table 8. Real_workload_3 

Class Benchmark No. of Processes Job 
B BT 25 0 
B CG 32 1 
B EP 32 2 
B FT 32 3 
B IS 32 4 
B LU 25 5 
B MG 32 6 
B SP 25 7 
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Table 9. Real_workload_4 

Class Benchmark No. of Processes Job 
C SP 25 0 
C CG 32 1 
C EP 32 2 
C MG 32 3 

the performance results for 4 synthetic workloads and 4 real workloads. In this figure, 
‘B’ indicates Blocked, ‘C’ indicates Cyclic, ‘D’ indicates DRB, and ‘N’ indicates our 
new mapping algorithm. 

Fig. 2. Waiting time of messages for synthetic and real workloads (in mili-seconds) 

According to Fig.2 it can be seen that the new mapping strategy, has produced better 
results compared to other methods. In synthetic workloads, the number of processes in pa-
rallel jobs is more than the number of processing cores within a node. Besides, significant 
part of communications is due to jobs which have All-to-All patterns. These factors cause 
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synthetic workloads to be heavy communicating workloads. In such workloads, the 
Blocked technique which tries to accommodate parallel processes in minimum number of 
nodes, has led to severe contention on network interface and has unacceptable perfor-
mance, consequently. In contrast, Cyclic has gained better performance by distributing 
processes among computing nodes. Since in DRB method, processes which are communi-
cating frequently, are mapped near each other, process mapping is done as Blocked and 
the results are not efficient. The reason that the new method has performed more efficient 
than Cyclic is that in the new algorithm, efficient mapping conditions is determined for 
each parallel job independent of other jobs. In other words, if the amount of adjacency and 
communications between processes, is high, the new method will distribute the processes, 
otherwise it acts like Blocked. Based on performance results, the new mapping technique 
has gained performance improvements up to 5%, 8%, 29% and 91% for Synt_workload_1 
to Synt_workload_4 respectively (performance gain is calculated compared to the best re-
sult from other methods, i.e. Cyclic in here). In Real_workload_1 and Real_workload_2 
scenarios, IS and FT benchmarks were used more than other benchmarks. These bench-
marks have high communications and their communication pattern is All-to-All entirely. 
As a result, the above mentioned workloads are heavy and as can be seen in Fig. 2, the 
Cyclic method has performed better than the Blocked and DRB methods. In these work-
loads, the new approach has acted as efficient as Cyclic and even better (in 
Real_workload_1 scenario, 11% performance improvement is observed). In order to show 
that our approach can perform efficiently not only in heavy workloads, but also in non-
heavy workloads, Real_workload_3 and Real_workload_4 were used. Real_workload_3 
is a medium workload in term of communications and as can be seen in Fig. 2, there is no 
significant difference between performance results of different methods for this scenario. 
Despite this, the new mapping technique has performed a little bit better than others. 
Real_workload_4 is a scenario which has light communications and as we can expect, 
Blocked and DRB methods have better results than Cyclic. Performance results for this 
scenario show that the new mapping method has performed as well as Blocked which in-
dicates that the new approach can have efficient results even in light communicating 
workloads. 

5   Conclusion 

In this paper, we proposed a new process mapping algorithm to assign parallel 
processes to multi-core clusters aimed to reducing network interface contention. Since 
the number of processing cores within recent computing nodes is growing up rapidly, 
contention on shared resources is posing itself as a serious challenge and should be 
considered for optimizing performance. Here, we tackled this problem and proposed a 
process placement algorithm to alleviate contention on network interface as one of the 
main shared resources. We compared our technique with other well-known methods 
and observed that improved performance was gained (5% to 90%) in experimental 
workloads. Our mapping algorithm is easy to implement and its efficiency makes it 
usable in recent high performance multi-core clusters. 
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Iran for supporting us in this project. We hope this work be a valuable research to ex-
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