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Abstract. A video sequence consists of several hundred frames,
and as a result, creating a panoramic image from these frames is a
very time-consuming process. Consecutive frames have large over-
lap areas that do not provide much information. Therefore, some key
frames must be extracted for better performance. There are a num-
ber of methods for key-frame selection that match all frames in a
video sequence. We present a novel and efficient method to select
key frames from video for creating a large panoramic mosaic with-
out matching all frames. Consecutive frames are transformed and
projected onto the common mosaic surface and the position of each
corner of the next frame is predicted with a distinct Kalman filter on
this surface. The overlap area between each predicted frame and
its previous key frame is used as the criterion to select the next
key frame. This method uses video information to reduce features
and align frames with repeated structures more accurately. We show
that this approach is an efficient preprocessing step and substan-
tially reduces the time required to construct panorama from a video
sequence. © 2011 SPIE and IS&T. [DOI: 10.1117/1.3591366]

1 Introduction
Creating a panoramic view from still images is an interesting
field of research in computer vision and has found applica-
tions in several areas. For this purpose, a number of robust
algorithms have been proposed thus far,1, 2 and several com-
mercial software systems have been developed.1

However, the image-based mosaic algorithms do not work
efficiently when directly applied to video frames. A video
may include thousands of frames. Consecutive frames typ-
ically have large overlap. Thus, matching them has a high
computational cost without acquiring noticeable informa-
tion. Although a number of papers have proposed methods
for creating mosaics from video,3–6 they do not offer a so-
lution for frame selection without the need to match all the
frames.

To decrease computational cost, Steedly et al.5 extract key
frames based on the amount of overlap and stitch only these
key frames for constructing the mosaic image. Each frame
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is matched to the previous frame and a previous key frame.
If the amount of overlap is less than a threshold, then it is
marked as a key frame. The adjacent key frames must have
an appropriate balanced overlap area, because a large overlap
increases the computational cost without giving much data
and a small overlap results in less accurate image registration.
Mei et al.7 use motion vector field to select best frames for
mosaicing by constructing a global motion path. In their
approach, motion vectors from the MPEG video format is
extracted and used directly. In Refs. 3, 8, and 9 each pair of
consecutive frames are also aligned, which is a very time-
consuming method.

This paper presents a novel and fast method to select
key frames from video as an efficient preprocessing step
to create panorama. The main contribution is the camera
motion prediction process without matching all frames. All
the research work in this area concentrates on a special kind
of camera motion. However, in this work, camera movement
can include any kind of rotation or translation. Furthermore,
the camera does not need to be calibrated, and the focal length
could change during capture of a video.

In this work, consecutive frames are transformed and pro-
jected onto the common mosaic surface and the position of
each corner of the next frame is predicted with a distinct
Kalman filter in this surface (one Kalman filter for each cor-
ner). A frame where its corners are predicted is labeled as a
key frame if its overlap area with the last key frame is lower
than a threshold. Then, this new key frame is matched and
aligned with the previous key frame. Otherwise, corners of
the next frame are predicted and the overlap area between
this new frame and the previous key frame is computed. The
corners of this aligned frame (new key frame) are used to
update the Kalman filters.

The remainder of this paper is structured as follows:
Sec. 2 reviews the related works. Section 3 describes the cam-
era motion model and the image-matching technique. The
proposed method is described in Sec. 4. The Kalman filter
that is used in this paper is presented in Sec. 5. Threshold-
updating and feature-reduction methods are introduced in
Sec. 6 and 7. Section 8 explains the last step of the method to
enhance key fame selection. Experimental results are shown
in Sec. 9, and the conclusion is given in Sec. 10.
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Fig. 1 Some frames of three different videos projected onto their
reference frame (first frame plane). Corners compose trajectories on
the common mosaic surface.

2 Related Works
Mosaicing methods for creating a panorama could be di-
vided into two categories: In the first category, narrow strips
are taken from consecutive frames, warped (if required), and
placed onto the mosaic image.10–13 Manifold projection10 is a
fast technique that is based on the alignment of the strips con-
tributing to the mosaic. It is contrary to the alignment of the
entire overlap area between frames. The final product of this
technique is less accurate than those of static image-based
batch-processing approaches.5 In Ref. 11 more general types
of camera motion, such as forward motion and zooming, is
allowed by using strips whose shapes are determined adap-
tively during the mosaicing process. Wexler et al.12 proposed
a method that converts the geometrical alignment problem to
an optimization mosaicing problem when the camera pans
or translates mostly along one direction. In this approach, a
graph is constructed in which its nodes represent strips (a
one-pixel-wide column of pixels) and the edges are possible
transitions from each strip to the strips of the next frame. Each
path from a strip of the first frame to a strip of the last frame
corresponds to a panoramic view. The weight of each edge
encodes the transition cost. The Dijkstra algorithm is em-
ployed to solve this global optimization process efficiently.
This method deals seamlessly with both static and dynamic

Fig. 2 Flowchart of the proposed method. KF stands for key frame.

scenes with or without 3-D parallax. The methods of the first
category are suitable for video mosaicing, but they restrict
the camera motion. For example, the camera cannot follow a
zigzag path (go back onto a scene partly seen before).

Most existing mosaicing systems fall into the second
category, which align and combine full images or video
frames.1, 5, 14–17 Two different methods are used in this cat-
egory to align complete images: the direct method16 and
feature based method.1, 14, 15, 17 The direct method takes the
advantage of using all the available image data (pixel-
to-pixel matching) and hence can provide very accurate

Fig. 3 trajectories of four corners on a common mosaic surface. The
velocity of each corner is different. The first frame is shown by a solid
rectangle. The main motion of the camera is a mixture of panning and
rolling. Its panoramic view is shown in Fig. 10 (video from camera
with roll motion).
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registration, but their convergence depends heavily on the
initialization process. In the feature-based approach, corre-
spondence features between two images are used to estimate
the geometric transformation between them. For this pur-
pose, different kinds of features have been proposed. Among
them, scale invariant feature transform (SIFT) features18 that
are invariant to rotation, zooming (scaling), and illumina-
tion changes have gained popularity more recently.1, 5, 17, 19, 20

Feature-based approaches are more robust when there are
moving objects in the scene, and they are potentially faster
than the direct methods. Line features in Ref. 17 have been
used to estimate lens-distortion parameters.

Direct or feature-based methods are used to register pairs
of images. To minimize the misregistration error between all
pairs of images, a global adjustment is necessary. Bundle ad-
justment is a photometric technique for combining multiple
images of the same scene into an accurate 3-D configura-
tion, as used in Refs. 1, 5, and 17. It is an iterative algorithm
that computes optimal values for the 3-D coordinates of the
scene and camera position by minimizing the overall feature
projection errors using a least-squares algorithm. Bundle ad-
justment is an offline method to achieve global optimization.
To construct real-time mosaicing, Civera et al.21 apply the
extended Kalman filter (EKF) as a sequential approximation
to bundle adjustment in a special situation. They use all the
frames in a video captured from a calibrated camera. How-
ever, their results could not compete with the ones of an of-
fline method such as Ref. 1. It is also notable that the method
of Brown and Lowe1 does not need camera calibration. Mo-
rimoto and Chellappa22 present one of the prior works in
stabilization and mosaicing using EKF. Camera-motion pa-
rameters consist of the state vector of EKF and rotational
camera moves with a constant focal length. There is no global
optimization in their method, which causes the accumula-
tion of misregistration errors. Kim and Hang23 demonstrate
a real-time mosaicing process using a sequential graph. In
their approach, images must be mapped to a flat mosaic sur-
face during image registration, which is not suitable for large
fields of view.

Aligned images must be mapped onto a suitable com-
positing surface. The compositing surface, which depends
on the camera motion and the application, can be flat, cylin-
drical, spherical, or any type of surface used for environment
mapping.

After alignment, the value of each pixel in the overlap
area must be determined. Weighted averaging can be used
for this purpose. However, blurring can occur. For highest
visual quality, some robust techniques first determine seams
between images in the overlap area and then blend images.
The Voroni algorithm is one way to select seams, but it ig-
nores local image structures.24 It is better to place the seams
in the regions where the transition from one image to another
is not visible. The graph-cuts method25 has been used in
Refs. 20, 26, and 27 to select optimal seams. Blending is
applied to remove image edges that are still visible due to
lens distortion, moving objects, misregistration errors, vi-
gnetting, and exposure differences. Multiband blending28

is a traditional and robust algorithm that is used in many
papers.1, 4, 11 Blending in the gradient domain is another use-
ful approach.20, 29 Position of moving objects in the final
image must be determined before blending; otherwise, they
cause visible artifacts (ghosts) in the final image.

Fig. 4 Feature reduction: (a) two overlapped frames with features
that are mapped to the common mosaic surface. The upper frame
has 4658 features (circle elements), and the lower frame has 3477
features (point elements). (b) Removing features outside of the over-
lap area; the upper frame has 2659 features and the lower frame has
2268 features in the overlap area. (c) Features that are in the real
overlap area but removed due to prediction errors; 73 and 53 fea-
tures are incorrectly removed from the upper and the lower frames,
respectively.

3 Camera Motion Model and Image Matching
Video sequences used in this paper have been taken by a hand-
held camera undergoing zooming, rotation, or translation.
Video frames are aligned together with a 3×3 homography
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Fig. 5 Part of the camera-movement trajectory. the sign of the cam-
era motion velocity is changed in position C. The � shows the new
key frame place.

matrix. To estimate the homography matrix between two
frames, SIFT features18 are extracted from each frame. After
finding corresponding features, the random sample consen-
sus (RANSAC) algorithm is used to estimate the homog-
raphy matrix.30 In each iteration of this robust algorithm,
four feature correspondences (three of them not collinear)
are selected randomly to estimate the homography matrix H
using the direct linear transformation (DLT) method31 and
the number of inliers (feature correspondences that are ge-
ometrically consistent with the estimated H) are computed.
After N iterations, the sample set with the maximum number
of inliers is selected as the final solution. A sufficient number
of iterations must be performed to ensure that RANSAC has
a good chance of finding a true set of inliers.24 Because the
perspective model is used for matching two images, there
will be no limitations on camera movement. Therefore, both
rotational and translational movements are permitted, but not
both at the same time. The focal length can be variable in both
cases. It is assumed that parallax does not occur in camera
translation.

4 Algorithm Overview
As mentioned eariler, the prediction of the camera motion is
the main purpose of this paper in order to select key frames
from a video for panoramic view construction. One approach
is to extract motion parameters and try to predict them.
Because there is no limitation on the movement of an uncali-

Table 1 Specifications of the four experimental videos.

Video No. 1 2 3 4

Total number of frames
of the video shot

1336 880 1250 130

Number of aligned
frames

115 49 72 19

Number of key frames 21 4 12 8

Number of overlap key
frames (consecutive
and non-consecutive)

53 3 21 10

brated camera, the decomposition of the homography matrix
is known to be very sensitive to image noise.13 In order to
solve this problem, the proposed method tracks the corners of
the frames instead of estimating camera-motion parameters.
All frames are transformed and projected onto the common
mosaic surface. The first frame is considered as the reference
frame, and all frames are warped into this reference coor-
dinate system. In this surface, the corresponding corners of
frames form four trajectories.

Figure 1 shows some frames of three videos projected
onto their reference plane. In Fig. 1, each frame is projected
onto the previous frame using Hi−1,i , which is computed
by direct matching. Hi, j projects frame j to frame i . When
i and j are nonconsecutive, homography matrices must be
multiplied with each other Eq. (1). H1, j projects frame j to
the reference coordinate system,

Hi, j = Hi,i+1Hi+1,i+2 . . . H j−1, j = �
j−1
m=i Hm,m+1. (1)

Kalman filtering is used in this approach to avoid match-
ing every frame to its previous frame. The flowchart in the
Fig. 2 illustrates the process of the proposed method. Be-
cause of the different velocity of each corner on the common
mosaic surface (Fig. 3), four distinct Kalman filters are used
to predict the position of the next frame. Then, the over-
lap between the last key frame and the predicted frame is
estimated. The predicted frame is marked as a new key
frame if its overlap with the previous key frame is lower
than a threshold. In this situation, this frame is aligned to the

Fig. 6 Trajectories of the upper left corner of frames in videos: (a) 1, (b) 2, and (c) 3. The dotted lines are the predicted trajectories and the
solid lines show the exact trajectory of corners which were obtained through alignment. Plus marks on solid lines indicate the upper left corners
of the key frames. The � are key frames that are selected in the enhancement step.
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Fig. 7 Key frames of videos on the common mosaic surface: (a) 1, (b) 2, and (c) 3. Red lines show the edges of predicted frames and Blue
quadrilaterals show real positions of them. The difference between each predicted key frame and corresponding aligned one is shown in gray.
The dotted quadrilaterals are key frames that are selected in the enhancement step.

previous key frame. The corners of this new aligned key
frame are used to update Kalman filters. When the overlap
area is more than the overlap threshold (OT), the Kalman
filters predict corners of the next frame. In this state, Kalman
filters are not updated except for situations where the differ-
ence between the number of this frame and the number of
previous aligned frame is larger than a specified threshold,
referred to as distance threshold DT. The first five frames are
aligned, and the Kalman filters are updated to acquire better
prediction in the remainder of the process.

In each alignment step, the amount of OT and DT are
updated, which are explained in Sec. 6. Feature reduction
and the enhancement of key frame selection are the other
steps of the algorithm and will be explained in Sec. 7 and 8.

5 Kalman Filter
The process of each corner movement over time, which forms
the trajectory on the reference frame, can be considered as a
dynamic system. If the camera is moved smoothly, then the
corners trajectory can be approximated by a time-invariant

Fig. 8 The coverage rate of the proposed method for video 3. The
black areas are parts of the scene that are not covered using the key
frames.

linear system and, thus, a state-space approach can be em-
ployed to model it. Its dynamic equation can be expressed as

xk = Axk−1 + qk−1, (2)

yk = Hkxk + rk, (3)

where xk is the state vector of the system on the time step
k and yk stands for the observed corner position on the time
step k. A and H are the state transition and the measurement
matrices, respectively. Assume that qk−1 ∼ N (0, Qk−1) is
the white Gaussian process noise and rk ∼ N (0, Rk) is the
white Gaussian measurement noise. The measurement noise
is uncorrelated with the process noise.32, 33

The Kalman filter provides a recursive solution for the
least-squares estimation of a linear discrete-time dynamic
system, which has equations that are similar to Eqs. (2)
and (3).

We track the corners of frames in the reference coordi-
nate plane (two-dimensional space). x and y, the position of
each corner, are measured in Cartesian coordinates. The state
vector in this problem can be expressed as

x = (x, y,
.
x ,

.
y , ẍ, ÿ)T , (4)

where x and y are corner coordinates, .
x and .

y are veloc-
ities of corner motion, and finally, ẍ and ÿ are the corner
accelerations. We use the Singer model for corners’ motion
modeling.34, 35 In the previous work,36 we used a Wiener pro-
cess acceleration model for this purpose. The Singer model
assumes that the target acceleration is a zero-mean first-order
stationary Markov process, whereas the Wiener model is re-
ferred to as a nearly constant acceleration model. They are
compared in Sec. 9.

Table 2 Comparisons between coverage rates (%) of the proposed
method and the downsampling method.

Video 1 2 3 4

Down-sampling by a factor of 20 97.0 96.6 99.1 Fail

Proposed method 96.8 98.4 94.2 96.9
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The transition matrix of the dynamic model is set to

A=

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

1 0 T 0 (αT −1+e−αT )/α2 0

0 1 0 T 0 (αT −1+e−αT )/α2

0 0 1 0 (1−e−αT )/α 0

0 0 0 1 0 (1−e−αT )/α

0 0 0 0 e−αT 0

0 0 0 0 0 e−αT

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

. (5)

In transition matrix, [Eq. (5)], T is the step size and can
be computed from the camera frame rate ( T = 1/camera
frame rate) and α = 1/τ . τ is the maneuver time constant
and thus depends on how long the maneuver lasts.34, 35 In
the correction step, we only measure the positions of each
corner. Thus, the measurement matrix is set to

H =
[

1 0 0 0 0 0
0 1 0 0 0 0

]
. (6)

The misregistration error of SIFT features is considered as
the measurement noise.

The initial position of each corner of the first frame is de-
termined precisely, and their initial velocity and acceleration
is assumed to be zero. The initial error covariance matrix is
set to a diagonal matrix whose elements are equal.

6 Thresholds Updating
6.1 Overlap Threshold
The overlap area between two consecutive key frames must
be balanced. A large overlap increases the computational cost
without providing much data, and a small overlap results
in less accurate image registration. To this end, a suitable
overlap threshold is needed. The diversity of features in the
overlap area also has an important role in the accuracy of
alignment and depends on the context of images. In this
work, it is assumed that a robust alignment can be achieved
if the features’ area is within 0.3 of the frame area (the area
of the convex hull of features is considered as the features

area). Equations (7) and (8) are used to determine the amount
of the overlap threshold. It varies between 0.4 and 0.6 due
to Eq. (8). In Eq. (7), OT′ will equal the previous threshold
(pre − OT), if the diversity of features is good. In the initial
step, the threshold is set to 0.6 and is updated after each
alignment,

OT′ = preOT
0.3(frame area)

convex hull area of features
, (7)

OT =
⎧⎨
⎩

0.4 OT′ < 0.4

OT′ 0.4 ≤ OT′ ≤ 0.6

0.6 OT′ > 0.6
(8)

Furthermore, in situations where the number of matched fea-
tures between two frames is < 200 or the absolute difference
between the predicted overlap and the estimated overlap is
> 0.15, OT is set to 0.6.

6.2 Distance Threshold
The distance between aligned frames is another important
threshold. Until predicted overlap is less than OT, the Kalman
filter is not updated. Thus, in addition to the overlap threshold,
another threshold must be defined. If the distance between
this predicted frame and previous key frame is larger than
this threshold (DT), then the predicted frame is used for
alignment and the Kalman filters are updated. The value of
DT is computed as follows:

DT =
{

max(10, DT′/2) f < 200 or |pred.overlap − est.overlap| > 0.15
min(20, DT′×1.5) f > 200 and |pred.overlap − est.overlap| < 0.15 (9)

where DT′ is the previous value of DT and f is the number
of matched features between two frames. With Eq. (9), the
distance threshold (DT) will get three different values (10,
15, and 20). In the initial step, DT set to 10 and, during
the process, it can increase in order to avoid extra Kalman
filter updates. If the absolute difference between the predicted
overlap and the estimated overlap is > 0.15, Kalman filters
must be updated more frequently. Thus, the value of DT will
be reset to 10.

7 Features Reduction
It is known that only features that are in the overlap area are
suitable to align two frames. Removing features outside the
overlap area improves the accuracy and speed of the align-
ment. All features of the predicted frame must be mapped
to the common mosaic surface, and only those inside the
predicted overlap area are selected for alignment. A homog-
raphy matrix is needed to map them, and it is obtained from
the four predicted corners of the frame.
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Fig. 9 Comparison between the estimated camera trajectories (co-
ordinates of the upper left corner of the frames) on the common
mosaic surface by three different approaches on video 4 (repeated
structures). It can be seen that the two first methods produce a wrong
camera-movement model at the start of their trajectories.

Figure 4 shows two aligned frames. In Fig. 4(a), the lower
frame with point features is mapped onto the upper frame
with circle features according to the prediction results and,
in Fig. 4(b), the features outside the overlap area are re-
moved. Some features may be removed incorrectly, but with
respect to all features, they are not many [Fig. 4(c)]. In the
case of images with repetitive patterns, this feature reduction
plays an important role in the registration process and avoids
misregistration. This is also shown in Sec. 9.

8 Enhancement of Key Frame Selection
Figure 5 shows part of the camera movement trajectory of
one test video (video 3). The sign of camera motion velocity
is changed in position C. The proposed method selects the
frames in positions A and B as key frames and tracks the
camera motion. The overlap area between the current frame
and the last key frames (B) decreases steadily, but before the
overlap area goes less than the threshold, the camera returns.
Therefore, the frame in position D is selected as the next
key frame (not any frames between B and D). As shown
in Fig. 5, selecting a key frame between B and D improves
the results and expands the area covered by key frames. An
enhancement step is used to find such key frames. In this
step, the degree between each of the three consecutive key
frames (α) is calculated. If the degree is > 90 and the distance
between B and D is large enough (for example, more than
50 frames), one aligned frame between these two key frames

Table 3 Run time of different methods (in 1000 s.)

Video 1 2 3 4

Aligning all frames for key frame selection 3.68 22.08 15.27 0.49

Proposed method without feature reduction .27 1.30 0.77 .07

Proposed method with feature reduction .25 .59 .45 .06

(for instance, ♦ in Fig. 5) is selected as a new key frame. This
new key frame is selected in a way that covers the smallest
overlap area.

9 Results
In this section, implementation results of the proposed key-
frame selection method are presented. The method was im-
plemented in MATLAB, and several experiments were ar-
ranged. All video sequences were captured in a 360×640
resolution.

The total number of frames of the test video shots and the
number of their aligned frames are shown in Table 1. The
number of key frames extracted from the proposed method
is specified in the forth row. In all video streams, the first
frame is considered as the first key frame. The last frame is
also selected as a key frame if the distance from its previous
key frame is more than the distance threshold.

Figure 6 shows the trajectories of the upper left corner of
frames in videos 1, 2, and 3 in the common mosaic surface.
The dotted lines are the predicted trajectories, and the solid
lines show the exact trajectory of corners that were obtained
through alignment. Plus marks in Fig. 6 show the upper left
corners of the key frames, and ♦ show key frames that are
selected after enhancement.

A stigma is seen in the corner trajectory of video 2
[Fig. 6(b)]. This is because a zoom-in followed by a zoom-
out exists in the camera motion of video 2. It shows that
Kalman filtering of this algorithm can easily recognize zoom-
ing functions of the camera and can be used in multiresolution
panorama.

Figure 7 shows all the key frames of videos 1–3 in the
common mosaic surface. The existence of overlapping be-
tween nonconsecutive key frames can be determined from
Fig. 7. Alignment of overlapped-nonconsecutive frames is
also performed to increase overall accuracy. As an exam-
ple in video 3, the frames numbered 1 and 7 are two non-
consecutive overlapped key frames. This alignment is only
accomplished if the amount of overlapping is > 0.3. If the
overlapped area is > 0.8, then one of the frames is removed.
Consider a case where the camera has zigzag movements;
in such cases, nonconsecutive alignments also appear. If no
camera-movement estimation is done for a sequence of k
different key frames, then a k(k − 3)/2 overall extra align-
ment checking is needed to find the nonconsecutive align-
ments. However, with the proposed method, these overlaps
are simply detected on a common mosaic surface without
extra alignments. The numbers of overlapping key frames
(consecutive or nonconsecutive) of videos 1–4 are given in
Table 1.

As shown in Table 1, the proposed method is quite differ-
ent from and more advantageous than a simple downsampling
method. For example, 44 frames are selected with a down-
sampling rate of 20/1, while only four frames are needed

Table 4 Average of DT for test videos.

Video 1 2 3 4

Average of DT (frames) 11.9 19.1 19.4 9.3
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Fig. 10 Panoramic views constructed from four different videos with rotating cameras: (a) 1, (b) 2, (c) 3, (d) video from camera with roll motion.

for panorama creation of video 2. Furthermore, the precise
camera behavior (zoom-in, zoom-out) is detected and, also,
selection of the sampling rate is an important problem in the
downsampling process. It is completely dependent on the
camera-movement velocity and a constant number can never
be suitable.

Some parts of the scene are inevitably lost if not all frames
are used for panorama creation (Fig. 8). For the purpose of
evaluating the proposed method, the whole scene was created
using all frames, with no frames dropped. Coverage rates of
the scenes for the proposed method and the downsampling
method are shown in Table 2. The results obtained by the
proposed method are very close to the results of the down-
sampling method and, in some cases, are better. whereas, the
number of the key frames used in the proposed method is
much less. It should be noted that the lost data are small parts
of the surrounding area of the scene and not so important. On
the other hand, sometimes the downsampling method fails to
create panorama correctly from video (for instance video 4).
This will be described in detail.

The method in Ref. 5 aligns all frames of a video to extract
key frames. This is very time-consuming. Table 3 shows the
required times to extract key frames from videos using the
proposed method, with or without feature reduction, and the
time to align all frames. The experiments were performed on
a laptop with an Intel core 2 duo 2.5-GHz CPU.

The average number of SIFT features extracted from each
frame of videos 1 and 2 is 1617 and 6378, respectively. This
difference in the number of extracted fearures directly affects
the computational time to select key frames.

Table 5 Comparisions Between the number of selected key frames
in the method of Ref. 36 and the proposed method.

Video 1 2 3 4

Method of 36 24 5 19 Fail

Proposed method 21 4 12 8
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Table 6 Average alignment error for different methods (in pixel).

Video 1 2 3 4

Aligning all frames for key frame extraction 0.58 0.43 0.01 0.55

Proposed method without feature reduction 0.60 0.50 0.49 Fail

Proposed method with feature reduction 0.61 0.47 0.46 0.67

Table 4 shows the average of DT during execution of
the algorithm. As can be seen, it varies for different videos.
It directly depends on the speed and the type of camera
movement and video content.

In Table 5, the number of selected key frames using the
method of Ref. 36 and the proposed method are given for the
four test videos. As can be seen, the number of key frames
in the method of Ref. 36 are more than that of the proposed
method, because Ref. 36 uses a fixed distance threshold (20)
compared to a variable threshold in the proposed method.
The method of Ref. 36 fails to extract key frames on video
4, because the feature-reduction step has not been used.

In the proposed method, feature mismatching of the re-
peated structures will not occur because it predicts the posi-
tion of each frame using video-stream information. The cam-
era moves on a straight line in video 4 and captures a repet-
itive structure. Figure 9 shows three movement trajectories
with three different approaches on video 4. These approaches
are (i) downsampling by a factor of 20, (ii) Kalman filtering
with feature reduction and (iii) Kalman filtering without fea-
ture reduction. As shown in Fig. 9, the alignment methods
without feature reduction fail to estimate the camera move-
ment, whereas the Kalman filtering prediction with feature
reduction estimates it correctly. The feature-reduction step
removes unrelated features, which yields correct alignment.

In all experiments, a similar alignment algorithm between
two frames is used; thus the only parameter that can affect the
accuracy of matching is the amount of overlap area between
two frames. The average alignment error of different methods
between two frames is shown in Table 6. As can be seen,
alignment accuracy is not changed much and still remains
at < 1 pixel. This is due to proper distribution and good
precision of SIFT features.

The Singer and Weiner models were used in the design
of a Kalman filter to compare their results. In both cases,
variable thresholds and feature reduction were applied. Both

Table 7 Rms errors of the Weiner and the Singer models.

Weiner Singer

Min Max Mean Min Max Mean

Video 1 26.7 27.3 27 28 29.4 28.6

Video 2 16.2 17 16.9 14.2 14.8 14.6

Video 3 32.8 36.6 35.9 29.9 34.4 31.5

Video 4 59.7 88.2 67.1 55.7 68.9 61.6

Fig. 11 A panoramic view with repetitive structure constructed from
a video with translating camera (Video 4).

methods were run for 10 times, and the root-mean-square
errors (the distance in units of pixels on a common mosaic
surface) for the best, worst, and the mean cases are reported
in Table 7. It can be seen that the Singer model yields better
results.

The panoramic views of videos are shown in Figs. 10
and 11. To construct panoramas in Fig. 10, the bundle adjust-
ment algorithm which has been developed in Ref. 1 is used.
Using the method described in Ref. 24, frames were straight-
ened and finally mapped onto a spherical surface.2 The edges
of some frames are visible in panoramic views of videos 1–
3. A traditional and robust multiband blending algorithm28

can be used to remove them. Figure 11 shows the panorama
image that resulted from video 4 with a straight movement
of the camera. This panoramic view is constructed without
bundle adjustment; however, if we use bundle adjustment,
then it will yield better results.

10 Conclusion
In this paper, a fast and accurate method for key-frames se-
lection from a long video sequence to create panorama has
been presented. In contrast to existing methods, this approach
prevents the need of alignment of all frames of video stream
by using the prediction of the camera motion. Because the
thresholds vary depending on the video content and camera
movement, a precise number of aligned frames could not
be estimated. However, in the worst case, 0.1 of the frames
are aligned to extract key frames. In addition, the nonover-
lapping consecutive key frames can be simply detected on
the camera mosaic surface without extra alignment. In this
work, the homography matrix was used to map frames onto
the common mosaic surface. The proposed method uses the
information of video to reduce features and align frames with
repeated structures more accurately. Any loop and zooming
in the camera path can be detected easily as the key frames
are projected onto the common mosaic surface. The only re-
striction to the camera motion is the degree of pan and tilt,
which should be < 180 deg, as long as the common mosaic
surface is flat.
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