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Abstract High performance clusters, which are established by connecting many
computing nodes together, are known as one of main architectures to obtain extremely
high performance. Currently, these systems are moving from multi-core architectures
to many-core architectures to enhance their computational capabilities. This trend
would eventually cause network interfaces to be a performance bottleneck because
these interfaces are few in number and cannot handle multiple network requests at
a time. The consequence of such issue would be higher waiting time at the network
interface queue and lower performance. In this paper, we tackle this problem by in-
troducing a process mapping algorithm, which attempts to improve inter-node com-
munications in multi-core clusters. Our mapping strategy reduces accesses to the net-
work interface by distributing communication-intensive processes among computing
nodes, which leads to lower waiting time at the network interface queue. Performance
results for synthetic and real workloads reveal that the proposed strategy improves the
performance from 8 % up to 90 % in tested cases compared to other methods.

Keywords High performance clusters · Network interface · Inter-node
communications · Process mapping algorithm

1 Introduction

Parallel processing is one of the basic approaches to achieve high computing power
required by many scientific and economic applications. For this purpose, various ar-
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chitectures have been proposed in which cluster computing has gained more popular-
ity. Based on [1], up to 81 % of 500 top supercomputers in the world use these systems
as their main architecture. Another trend in this realm is the advances in multi-core
processors technology that make them an excellent choice to use in clustered nodes.
Westmere series of Intel Xeon and Magny-cours series of AMD Opteron, with 10
and 12 cores per chip, respectively, are examples of multi-core processors, which are
becoming common in recent computing nodes.

Although multi-core processors can improve computational capabilities, they also
introduce some challenges. The main challenge in this regard is the contention of
different processing cores on shared resources, like memory and buses. Under such
condition, shared resources can be a performance bottleneck, and can adversely affect
the performance of running applications. Consequently, efficient execution of parallel
applications in such distributed systems needs more deliberations on the performance
of these systems. In doing so, there are a lot of studies including [2–6], which provide
insights into the conditions in which efficient performance of clustered systems can
be obtained.

In spite of considerable growth in the number of processing cores within the com-
puting nodes, the number of available network interfaces has remained fixed and this
number is 1 or 2 for most systems. This issue can lead to high usage of network
interfaces in many workloads, especially in workloads with high volume of inter-
process communications. Since a network interface can service just one request at
a time, other communication requests must be queued to service later. Higher num-
ber of cores in a node results in more accesses to the network interface. Therefore,
waiting time of inter-node messages at the network interface queue will be increased,
which in turn, prolongs the execution time of parallel programs. Thus, we can dis-
tribute parallel processes among the nodes in a way that the queue length in each
network interface reduces considerably. This is important for the processes with high
communication demand.

This paper presents a solution for mapping parallel processes into multi-core clus-
ters in order to improve inter-node communications and to achieve high performance
when running parallel applications with high volume of network requests. For this
purpose, we have used queuing network theory to extract an analytical model which
represents inter-node communication time in a limited-size cluster. Using this model,
we determine affecting factors on communication time, and extract some basic rules
to use in the new mapping algorithm. Finally, we evaluate the performance of our
approach using the simulation for synthetic and real multi-job workloads. We show
that the proposed method can improve the performance in communication-intensive
workloads from 8 % up to 90 % compared to the results obtained from other well-
known mapping methods.

1.1 Related works

There are a lot of works which have investigated improving communication perfor-
mance in clustered systems. Some works, as stated in [7], have focused on improving
MPI1 libraries to obtain efficient performance. An example of such works is a study

1Message passing interface.
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of Chai et al. [8]. Some other works offer communication improvement for special
interconnection networks. Rex et al. in [9], for example, have tried to improve the
performance of InfiniBand interconnection networks. In this study, the data to be
sent is located in huge pages, which requires less page address translation.2 Conse-
quently, the time needed for memory registration operation,3 and hence communica-
tion time is reduced. Although methods mentioned earlier are worthy of considera-
tion, the main approach to improve communication performance is to use efficient
process mapping techniques when assigning parallel processes to processing cores.
Such techniques have significant impact on improving performance, and hence they
have attracted more attention compared to the other methods.

Blocked and Cyclic are two common methods for mapping processes in clustered
systems. These techniques have been investigated in some studies such as [6, 10, 11].
In the Blocked method, process mapping is started by selecting a computing node and
assigning parallel processes to its idle cores one-by-one. When there is no idle core
to continue, another computing node is used and this procedure is repeated until the
end of assignment. In the Cyclic method, parallel processes are distributed among
computing nodes in a round-robin fashion. Although Blocked and Cyclic methods
are used as the default process placement policy in many situations, these approaches
have little inherent intelligence. Moreover, in a multi-job workload, the efficiency of
these techniques may be dependent on the order in which parallel jobs fall within the
workload.

Beyond the Blocked and Cyclic, there are some other advanced methods in which
[7, 12–14] are the most important ones. The proposed mapping technique in these
studies is based on graph partitioning techniques. The main idea in these techniques
is to find processes that communicate to each other frequently, and to place them
near each other (e.g. to place them in the same node). In this way, those processes
can profit from higher bandwidth of main memory compared to network interface
bandwidth. In order to do this, two graphs are created: Application Graph (AG) and
Cluster Topology Graph (CTG). For the AG, vertices represent parallel processes, and
edges represent communications between parallel processes. For the CTG, vertices
and edges represent cores and available bandwidth between corresponding cores, re-
spectively. Using these two graphs, the problem of assigning parallel processes into
processing cores is converted to a graph mapping problem, i.e. finding an efficient
mapping from AG to CTG. Since the graph mapping problem is known as a NP
problem [15], some heuristics have been introduced, which are based on graph par-
titioning concepts. DRB4 and K-way Graph Partitioning are two common heuristics.
While the DRB method divides AG into two sub-graphs, K-way graph partitioning
divides it into K sub-graphs. Each sub-graph contains frequently communicating pro-
cesses. By ‘frequently’, we mean the total volume of data exchanged between each
pair of processes. The CTG is also divided into sub-graphs in the same way as for AG.
Each sub-graph of AG is then assigned to the peer sub-graph of CTG. This operation

2Page address translation is a procedures done in InfiniBand networks before sending data.
3Memory registration operation is a procedure done in InfiniBand networks before sending data.
4Dual recursive bi-partitioning.
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is repeated on each sub-graph recursively until one process in AG or one processing
core in CTG remains.

The main issue related with graph partitioning techniques is that they may cause
shared resources to be a performance bottleneck, when mapping frequently com-
municating processes near each other. Currently, there are few studies that propose
a mapping approach to remove such bottlenecks. References [16–19] are some of
these studies. Agrawal et al. in [16] propose a mapping algorithm to avoid conges-
tion on Torus interconnection networks. This study just pays attention to the problem
of contention on the interconnection network, and does not consider the matter on
the network interface. Koop et al. in [17] address the network interface contention
problem by putting a combination of parallel jobs with high inter-node communica-
tions and low inter-node communications within one computing node. In this way,
contention is alleviated while the maximum number of processing cores is used in an
efficient way. However, this study does not provide a systematic mechanism to use in
all scenarios and under every condition. In [18], a scheduling method is used to mit-
igate contention on memory and network interface. However, this method does not
employ an intelligent mapping approach. Because of lack of a systematic approach
to address the contention issue, we already proposed a mapping strategy to reach the
goal [19]. In that study, we tried to limit the number of network interface accesses
by determining a threshold on the number of processes which send inter-node mes-
sages. Although we obtained efficient results in our previous paper, the way in which
we determined the threshold value was just an approximation, and we had not con-
sidered communication characteristics of workloads and important cluster-specific
parameters, such as the bandwidth of main memory or network interface. Moreover,
the condition in which we determined the threshold value in the previous paper had
some inefficiency, which is addressed in this paper. Briefly speaking, this study is a
complete revision of our previous work, which tries to present a systematic method
to address the contention problem.

1.2 Paper organization

This paper is organized as follows: In Sect. 2, an analytical model for a hypothetical
clustered system is extracted by the help of queuing network theory. This model is
then used in Sect. 3 to extract some basic rules. In Sect. 4, we propose our new
mapping algorithm to improve inter-node communications. Performance evaluation
results for synthetic and real workloads as well as simulation results are presented in
Sect. 5. Finally, Sect. 6 concludes the paper.

2 Analytical modeling of a clustered system

In this section, an analytical model for a hypothetical clustered system is extracted
by the help of queuing network theory. This model is then used to extract some basic
rules, which are employed in the proposed mapping strategy. The clustered system
for which we present an analytical model is a system containing 16 computing nodes.
These nodes are connected to one another using an intermediate switch and form a
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Fig. 1 Queuing network model
for processing cores and main
memories in a given node

star topology. There are 4 sockets in each computing node and each socket represents
a 4-core chip. As a result, each node contains 16 processing cores. We used NUMA5

as the architecture of each node because it is more efficient than SMP6 and is used
in recent systems. In NUMA architecture, there is a local memory for each socket
while remote memories can be accessed with more latency. A queuing network cor-
responding to internal components of a computing node is shown in Fig. 1.

Network interface is one of the most important components in each computing
node. In this paper, we have chosen InfiniBand technology for the interface (for the
rest of the paper, we refer to the ‘network interface’ by just ‘interface’). A schematic
of internal functionality for this kind of interface is depicted in Fig. 2a. According
to this figure, when a process needs to send or receive data, a pair of communication
queues (which is called Queue Pair or QP for short) is established for the process in
the interface. One of these two queues is used for sending messages (Send Queue)
and the other is used for receiving messages (Rcv Queue). When a send request is
placed in the Send Queue, a unit called DMA7 verifies the request and then refers to
the memory to fetch the requested data to be sent. The DMA then takes care of the

5Non-uniform memory access.
6Symmetric multi-processors.
7Direct memory access.
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Fig. 2 A model for an InfiniBand network interface

request to perform other required processing procedures. When receiving a request,
the DMA goes through similar actions (but in reverse order).

For the rest of paper, we consider some assumptions in our modeling. First, hard-
ware processing units, which prepare messages to send as packets are denoted by
“Processing-HW”. Second, since there are multiple DMA and multiple packet pro-
cessing units in recent interfaces, we assume that each QP has its own DMA and
Processing-HW units. Figure 2b shows a queuing network model we have used to
model InfiniBand network interface. In order to model intermediate switch, we con-
sidered a simple model in which two servers are used for each port of the switch: one
for sending direction and the other for receiving direction.
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Fig. 3 The path of inter-node communications

Since our main goal is to improve inter-node communications, we should extract
an analytical model representing inter-node communication time. For this purpose,
the path of transferring inter-node messages and servers in this path must be consid-
ered. According to the queuing network models, the path for transferring inter-node
messages corresponds to the one shown in Fig. 3. According to the path shown, the
time taken to send a message (given a message in class ‘r’) can be calculated as shown
below:

T src→dst
r = T src

r + T sw
r + T dst

r (1)

In Eq. (1), T src
r is the time spent at the source node for sending message ‘r’, T sw

r is the
time spent at the intermediate switch, and T dst

r is the time spent at the destination node
for receiving message ‘r’. Since the time spent at a given node (or at the intermediate
switch) equals to the sum of the elapsed time at different servers of that node, each of
the timing parameters in Eq. (1) can be rewritten as Eqs. (2)–(4). In these equations,
‘src’ and ‘dst’ indices are used to imply corresponding servers at the source and
destination nodes, respectively.

T src
r = RQP-src,r + RMem-src,r + RProc-hw-src,r + RPort-out,r (2)

T sw
r = RSw-in,r + RSw-out,r (3)

T dst
r = RPort-in,r + RProc-hw-dst,r + RQP-dst,r + RMem-dst,r (4)

In Eqs. (2–(4), RX,r indicates residence time of messages in class ‘r’ at server X. RX,r

is calculated as below [21]:

RX,r = WX,r + SX,r (5)
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In Eq. (5), WX,r and SX,r are average queue time and average service time at server
X for the message in class ‘r’, respectively. To compute WX,r, we used the G/M/1
model in which inter-arrival time and service time of messages are considered to have
general and exponential distributions, respectively. In the G/M/1 model, there is no
exact formulation to calculate WX,r, so we should limit ourselves to an approximating
one. One suitable approximation extracted from G/G/1 model is [21]:

WX,r ≈ C2
a + ρ2

X,r

1 + ρ2
X,r

ρX,rSX,r

1 − ρX,r
(6)

In Eq. (6), Ca is the coefficient of variations (CV) of message inter-arrival time, and
ρX,r is the utilization of corresponding server. Based on utilization law [21], utiliza-
tion of a server can be obtained by ρX,r = λX,rSX,r in which λX,r is the arrival rate
of messages of class ‘r’ to server X. Moreover, total utilization of a server is the sum
of its utilizations caused by different workload classes. So, we used Eqs. (7)–(12) to
obtain total utilization of different servers. In these equations, we assume that there
are entirely CLmsg workload classes for messages and CLnorm workload classes for
normal memory accesses caused by different processing cores (by ‘normal memory
accesses’ we mean memory accesses done for fetching a word from memory and not
for transferring a message). We also assume that messages sent by a given core are
entirely of the same class. Based on this assumption and because each core has access
to its own QP and Proc-HW servers, corresponding QP and Proc-HW servers for a
given core are utilized by just one workload class. This issue is formulated as Eqs. (7)
and (8).

ρQP = ρQP,r (7)

ρPr oc-hw = ρPr oc-hw,r (8)

Since the main memory is used for fetching data as well as transferring messages, the
memory unit is utilized by both workload classes, i.e. message classes and normal
memory access classes (Eq. (9)). Message classes are further divided into three sub-
classes: inter-node messages sent to other nodes, inter-node messages received from
other nodes, and messages sent as intra-node messages. So, the utilization of main
memory can be considered as Eq. (10). In this equation, CLout-msg, CLin-msg, and
CLintra-msg indicate the number of message classes for outgoing messages, incoming
messages, and intra-node messages, respectively.

ρMem =
CLmsg∑

i=1

ρMem,i +
CLnorm∑

j=1

ρMem,j (9)

ρMem =
CLout-msg∑

i=1

ρMem,i +
CLin-msg∑

j=1

ρMem,j +
CLintra-msg∑

k=1

ρMem,k +
CLnorm∑

l=1

ρMem,l (10)

The utilization of output port and input port of the network interface is simply ob-
tained by Eqs. (11) and (12). It must be noted that the same equations are applicable
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for ‘Sw-in’ and ‘Sw-out’ servers, respectively. This is because messages from ‘Port-
out’ are transmitted directly to ‘Sw-in’, and messages received at ‘Port-in’, come di-
rectly from ‘Sw-out’ (Fig. 3). The only difference is that instead of interface’s service
time, switch’s service time must be considered when calculating utilization.

ρPort-out =
CLout-msg∑

i=1

ρPort-out,i (11)

ρPort-in =
CLin-msg∑

i=1

ρPort-in,i (12)

At this stage, we have required timing model for inter-node communications. In
the next section, we use this model to conduct some experiments and to extract some
basic rules, which will be used later in our proposed mapping strategy.

3 Process mapping rules

In this section, we conduct various experiments to extract a few simple and basic
rules using the analytical model we previously obtained. These rules, which are used
in the proposed mapping strategy, are representative of conditions in which efficient
inter-node communications is reachable. In the rest, we consider some assumptions
for all of the experiments: memory bandwidth is equal to 4 GB/s, network interface
bandwidth is 1 GB/s (corresponds to the performance of InfiniHost MT23108 4X),
switching latency at the intermediate switch is 100 ns (independent of message size)
and the rate of normal memory accesses caused by each core is 100,000 req/s. We
also assume that the data to be sent by each core resides in the local memory of
socket containing that core.

The first experiment investigates the impact of message rates and sizes on the
communication time. In this experiment, one processing core sends messages out
to another node. Figure 4 shows the average time required to send a message for
different rates and sizes of messages. In this figure, we assume Ca = 1. The fig-
ure shows that the message length has more impact on the communication time
than the message rate. For example, the time taken to send a 512 kB message at
the rate 10 req/s is 2565 µs. When the length is doubled, the sending time be-
comes 5333 µs, which is as twice as before. But when the rate is increased even
to 5 fold, the sending time has negligible growth (just 5 % increase in communi-
cation time). According to the figure, we can see that increasing the rate is just
significant for large messages (messages larger than 2 MB) and not for medium
or small messages. Based on these observations, we can extract the first basic
rule:

Rule #1 In order to have efficient communications, the message length should have
more contribution to the mapping solution compared to the message rate.
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Fig. 4 Time taken to send
inter-node messages with
different sizes and rates

Fig. 5 Time taken to send
inter-node messages for
different CV values

The second experiment investigates the impact of CV (Coefficient of Variations of
message inter-arrival time) on the communication time. It is obvious that higher CV
causes higher latency. But in this experiment we want to precisely measure the effect
of CV values. Figure 5 shows the impact of CV values on the transferring time for dif-
ferent message sizes (the rate is fixed at 100 req/s). As shown in the figure, increasing
the CV has considerable impact on message sending time for large messages. This
impact is less for medium messages and negligible for small messages. For example,
by increasing the CV value from 0.5 to 3 for 1 MB and 64 kB messages at the rate
100 req/s, sending time will be increased by up to 75 % and 5 %, respectively. This
increase is negligible for small messages (0.2 % increase for 1 kB messages). So, the
second basic rule can be extracted as follows:
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Rule #2 While the CV of message inter-arrival time for small messages can be ig-
nored, it has drastic impact on the efficiency of communications for medium and large
messages, and hence it should be considered in the mapping solution.

The third experiment investigates the impact of two different inter-node message
classes on each other when these messages are sent out from a node. In this experi-
ment, two different processing cores, which are located in the same computing node
and in the same socket, send their messages to another node and slowdown in com-
munication time (which is caused by simultaneously sending messages) is measured.
The upper values in each cell of Table 1 show the percentage of slowdown, when
Ca = 1. For example, when the two processing cores send 64 kB messages at the
rate 1000 req/s, they prolong their communication time by up to 1.27 % (on average)
compared to the case in which just one core send its messages. As another exam-
ple, when 1 MB messages at the rate 10 req/s are sent beside 64 kB messages at the
rate 10 req/s, 64 kB messages experience 0.18 % slowdown while 1 MB messages
experience just 0.019 % slowdown. Based on the results, we see that the small and
medium messages incur negligible slowdown on each other when sending together.
However, when these messages are sent together with large messages, they would
experience high slowdown. This issue is also observable for other CV values. Higher
CV value causes higher slowdown. Based on these observations, we can extract our
third rule:

Rule #3 Because of drastic effect of large messages on other messages, we should
isolate the communication path of large messages from the path of other messages.
For performance reasons, large messages should be transferred within the node as
intra-node messages.

Our fourth experiment is similar to the third one, except that one of the two cores
sends intra-node messages. The lower values in each cell of Table 1 show the percent-
age of slowdown in inter-node communication time caused by intra-node communi-
cations. In this sense, messages on each column and on each row represent intra-node
and inter-node messages, respectively. Clearly, since the two processing cores are just
competing to access the main memory, the slowdown values are less than the ones
obtained in the previous experiment. In this experiment, just like the previous one,
small and medium messages incur less slowdown compared to the large messages.
So, the fourth rule is as follows:

Rule #4 Parallel processes which reside within the same computing node and send
large inter-node messages, should be assigned to different sockets. This way, con-
tention on the memory (and consequently on the interface) will be alleviated and the
slowdown in communication time caused by large messages will be reduced.

Our last experiment studies the impact of message length and message rate on
the network interface utilization. As Eq. (6) implies, more server utilization causes
more waiting time, which indicates the importance of utilization parameter. Figure 6
shows the utilization of interface output port for different messages. According to
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Fig. 6 Utilization of interface
output port for different
messages

this figure, the size and rate parameters have equal effect on the utilization of inter-
face, which is obvious based on the utilization law (ρ = λS). As can be seen from
the figure, medium and large messages, especially at high rates, can significantly
increase the utilization of interface port, which is led to higher waiting time. As a
result, we should limit the utilization of network interface port in order to speed up
inter-node communications. This issue forces us to determine a threshold on the num-
ber of processes, which send medium or large inter-node messages. Based on these
observations, our fifth rule is explained as follows:

Rule #5 A threshold must be fixed for the number of processes, which send medium
or large inter-node messages in a computing node. This can expedite inter-node com-
munications.

Although distributing processes with high communication demands can improve
inter-node communications in a parallel job, when addressing workloads with mul-
tiple parallel jobs, this may cause inter-job contention. With the presence of severe
inter-job contention, communications of different jobs can affect each other. This is
in contrast to Rule #3, which indicates that the communication path of different jobs
should be isolated. In such situations, distributing parallel processes has a detrimental
effect on the communication performance. So, yet another rule should be considered:

Rule #6 A trade-off should be considered based on the severity of inter-job con-
tention. This trade-off determines whether a threshold for distributing processes
should be considered or not.
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4 Proposed mapping algorithm

4.1 Proposed strategy

In this section, we propose our mapping solution to assign parallel processes into
processing cores of a multi-core cluster. The solution is based on the rules obtained
in the previous section. It must be noted that while the analytical results are just valid
in steady state conditions, they can be used to predict the behavior of many parallel
applications. This issue stems from the fact that in most parallel applications, compu-
tation and communication behavior of parallel processes are kept unchanged during
execution. Evidence to this claim is our analysis on NPB8 benchmarks. NPB suite is
a package containing several benchmarks designed to evaluate the performance of su-
percomputer systems [22]. Figure 7 shows the communication behavior of BT bench-
mark. In this figure, communication characteristics are shown for process 1 (process
with rank 1) and for the first 1000 communicated messages. In the figure, Sect. ‘a’

Fig. 7 Communication behavior of BT benchmark

8Nas Parallel Benchmarks.
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shows the variations in the size of communicated messages, Sect. ‘b’ shows the vari-
ations in the rate of communicated messages and finally, Sect. ‘c’ shows adjacent
processes of current process (process 1) during execution. As can it be seen, com-
munication parameters like message size or adjacent processes are kept unchanged
during execution (the rate parameter goes steady after a warm-up phase). Although
these results are just for one process, our observations confirm that similar behav-
ior is seen in other processes of the benchmark and also in other benchmarks. This
fact indicates the steady state manner of parallel applications and the capability of
analytical results to predict the behavior of these applications. In the following, our
proposed mapping algorithm is explained.

Based on the first analytical rule that emphasizes the role of message length in
communication time, we should separate parallel jobs based on the size of messages
they send. Here, we considered three different message sizes to categorize the jobs:
large messages (1 MB or higher), medium messages (2 kB to 1 MB) and small mes-
sages (2 kB or less). If processes of a job send messages with different sizes, the
largest message length is considered for action. According to Rule #3, an efficient
mapping strategy should isolate the path of communications for different message
sizes. Based on this rule, large messages should be transferred as intra-node mes-
sages as much as possible. In doing so, we first start mapping by assigning parallel
processes of the first category and try to put adjacent processes near each other and in
the same node to profit from higher bandwidth of memory compared to the interface
bandwidth. This trend is followed by assigning other jobs in the second and third
categories, respectively. In each category, parallel jobs are mapped to the computing
nodes in a job-by-job manner. For this purpose, parallel processes of a given job are
sorted based on their communication demand, and processes with higher demands
are mapped earlier.

The size and the rate of messages sent by each process are the main parame-
ters that define the communication demand of that process. According to Rule #2,
however, high values of CV can incur considerable delay in message sending time
when sending medium or large messages. More delay in message sending time can
be translated to more communication demand. To determine the impact of CV on
the communication demand, we’ve used an approximate method. In this method, the
percentage of slowdown in the communication time for different CV values (from
Ca = 0 to Ca = 3) is computed. We use then a fitness function, which fits our slow-
down percentages accurately. This fitness function is used to determine the percentage
of slowdown for any given CV value. Calculated fitness functions for the first and the
second categories are f (x) = 0.85x2 + 0.01x and f (x) = 0.12x2, respectively. To
calculate the percentage of slowdown, we used 1 MB and 64 kB messages at the rate
10 req/s for the first and second category, respectively. By denoting the CV of com-
munication from process ‘i’ to process ‘j ’ by CVij and using the fitness functions
we mentioned above, the demand of communication from process ‘i’ to process ‘j ’
(CDij ) is computed using the equation below. In this equation, Lij and λij are the
size and the rate of messages sent from process ‘i’ to process ‘j ’, respectively.

CDij = Lijλij + f (CVij )

100
Lijλij (13)
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After assigning a process with highest communication demand (given process A)
to an idle core, adjacent processes of A are assigned in the same node as much as
possible so that they profit from high bandwidth of memory (Rule #3). But there
is an important issue: If the number of adjacent processes is high, or if the num-
ber of available idle cores in current node is low, some of adjacent processes must
be assigned to other computing nodes inevitably. Under such conditions, presence
of high inter-node communications can lead to high utilization of interface, which
can degrade the performance. In this situation, based on Rule #5, a threshold must
be determined for the number of processes, which have high inter-node communi-
cations. But as mentioned in Rule #6, severe inter-job contention prevents us from
fixing a threshold value. The trade-off condition and the way in which we determine
the threshold value will be explained in the next sub-section. An important note in the
new algorithm is that when assigning multiple processes of the first category to the
same node, it should be tried to put these processes in different sockets aiming at alle-
viating contention on the local memories and improving inter-node communications
(Rule #4).

4.2 Fixing a threshold value

As mentioned earlier, in situations in which we cannot accommodate a process to-
gether with all of its adjacent processes in just one computing node, high inter-node
communications may cause severe contention on the interface, and a threshold should
be determined on the number processes accessing the interface. On the other hand,
distributing processes among computing nodes can deteriorate the performance when
there is high inter-job contention. In this paper, we used a simple but yet efficient
method to recognize high inter-job contention. In this method, average adjacency
among all jobs (jobs in the third category are ignored because they have negligible im-
pact on the communication performance) in the workload, indicated by WL_ADJavg,
is computed using the average adjacency among processes of each job (indicated by
ADJavg). WL_ADJavg is then compared with the number of cores in each node (in this
paper we assumed 16 processing cores in each node). If WL_ADJavg is more than the
number of cores, it is deduced that each process in the workload has inter-node com-
munications, which implies high amount of inter-job contention. In this situation,
all processes are mapped near each other as much as possible, and no threshold is
determined. Although may not severe, there could be considerable contention on the
interface when WL_ADJavg is lower than the number of cores. In such conditions, we
should again determine whether fixing a threshold value is required or not. In doing
so, it is verified that whether a process together with all of its adjacent processes can
be lodged in just one computing node or not. We do this by comparing ADJavg with
the average idle processing cores in the clustered system (indicated by IdleCoresavg).
The volume of inter-node communications would not be considerable If ADJavg is
lower than IdleCoresavg. Otherwise, a significant portion of communications would
be as inter-node communications. In this case, we should determine a threshold for
each job, individually. To determine the threshold value, we can minimize average
waiting time of messages at both interface queue and memory queue in a given node.
In other words, the goal is to find specific number of nodes that minimizes the value
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of W which is computed as follows:

W = Winterface + Wmemory (14)

In the equation above, Winterface and Wmemory are average waiting time of messages
at the interface queue and memory queue, respectively. Computing average waiting
time of messages at a given server requires information about the rate of requests
flowing to that server. Arrival rate of messages to the interface queue is approximately
computed as shown below:

λinterface =
⌊

P

n

⌋
Mλavg (15)

In the equation above, ‘P ’ is the number of parallel processes, ‘n’ is the number of
selected computing nodes, ‘M’ is the average number of adjacent processes out of
current node, and λavg is the average message rate between adjacent processes.

Equation (15) says that for ‘P ’ processes distributed among ‘n’ computing nodes,
there are �P

n
� processes, which reside in each selected node. Each process within a

node sends messages to M adjacent processes (on average) out of its node at the rate
λavg. To calculate the parameter ‘M’, we assume that when a process resides in a
node, all of its adjacent processes also reside in the same node, as much as possible.
Using this assumption, ‘M’ is computed as follows:

M =
{

ADJavg − (�P
n
� − 1) if ADJavg > �P

n
� − 1

0 otherwise
(16)

Arrival rate of messages to the memory queue is approximately computed as fol-
lows:

λmemory = λintra
mem + λout

mem + λin
mem (17)

In Eq. (17), λint ra
mem is the rate of accesses to the memory for intra-node communica-

tions, λout
mem is the rate of accesses to the memory by the messages sent outside, and

λin
mem is the rate of accesses to the memory by the messages received at current node

as a destination node. Each of these parameters is calculated as follows:

λintra
mem =

⌊
P

n

⌋
Nλavgτ (18)

λout
mem =

⌊
P

n

⌋
Mλavg (19)

λin
mem =

(
P −

⌊
P

n

⌋)
ADJavg

P − 1

⌊
P

n

⌋
λavg (20)

In Eq. (18), ‘N ’ indicates average number of adjacent processes in current node.
Using the assumption considered in Eq. (16), ‘N ’ can be calculated as below:

N =
{

�P
n
� − 1 if ADJavg > �P

n
� − 1

ADJavg otherwise
(21)
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Parameter ‘τ ’ in Eq. (18) represents the number of memory accesses per each intra-
node message transfer. Since in most MPI implementations, two memory copes are
done for transferring intra-node messages, we assume τ = 2. Equation (19) is ob-
tained just like Eq. (15), because for each message which must be sent as an inter-
node message, one access to the memory is required. In Eq. (20), (P −�P

n
�) indicates

the number of processes placed outside of current node and send messages at the rate

λavg to each of the �P
n
� processes inside the current node with the probability

ADJavg
P−1 .

By denoting the optimal number of nodes, which minimizes W , with nopt, the thresh-
old value is then computed as follows:

Threshold =
⌈

P

nopt

⌉
(22)

In some communication-intensive workloads in which processes use extremely
high rates or very large messages, utilization of servers may reach to 100 %. In this
case, it is not possible to compute the average waiting time. In such situations we
determine the threshold using the sum of arrival rates to the servers. In other words,
instead of minimizing W by Eq. (14), we try to minimize λ, which is computed as
below:

λ = λinterface + λmemory (23)

In the proposed mapping algorithm, parallel jobs in each category are sorted based
on the average adjacency among their processes, and jobs which have higher adja-
cency are mapped earlier. Because of high adjacency in these jobs, they may require
to be distributed among the computing nodes to obtain efficient performance. As a
result, these jobs should be mapped before other jobs to use available idle cores of
computing nodes. Figure 8 shows a brief pseudocode of the proposed mapping algo-
rithm.

5 Experimental results

5.1 Experimental results for synthetic workloads

Our first set of evaluations was performed on synthetic workloads. For this purpose,
we used the Omnet++ v4.1 simulator [23]. The system which we have considered
for simulation has the same characteristics as for one used in Sect. 3 for conduct-
ing simulations. Table 2 lists the parameters we used in our simulations. In syn-
thetic workloads, messages with different sizes and rates were generated. These traf-
fics use four different communication patterns between parallel processes including:
Bcast/Scatter, Gather/Reduce, All-to-All, and Linear. In Bcast/Scatter, one process
(as a root process) broadcasts its messages to other processes and the other processes
are just receiver. In Gather/Reduce, one process receives messages from other pro-
cesses and the other processes are just sender. In All-to-All, each process sends mes-
sages to all other processes. In Linear, each process receives messages from a previ-
ous process and sends its messages to a next process. We have defined 10 synthetic
workloads, some with fixed patterns (which are named based on the pattern used)
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New_Mapping_Algorithm( )
Input: Workload graph, Cluster architecture
Output: Mapping information
{
1. WL_ADJavg =find_total_average_adjacency( workload graph );
2. if(WL_ADJavg <=num_of_cores ) // inter-job contention is not severe

{
2.1. job_pool = select_jobs ( high_ length_messages );
2.2. sort_jobs ( job_pool ); // sort based on ADJavg
2.3. while ( job_pool is not empty )

{
2.3.1. current_job = select_job( job_ pool );
2.3.2. If (ADJavg <= IdleCoresavg − 1)

No threshold is determined;
else
{

nopt =find_optimum_nodes();

Threshold =
⌈

P
nopt

⌉
;

}
2.3.3. sort_processes(current_job); //sort based on comm. demand
2.3.4. current_process = select_process( current_job );
2.3.5. map_process( current_process );
2.3.6. sort_adj_processes( current_process ); // sort based on comm. demand
2.3.7. map_adj_processes( threshold, cluster architecture );
} // end while

2.4. job_pool = select_jobs ( medium_ length_messages );
2.5. repeat steps 2.2 and 2.3;
2.6. job_pool = select_jobs ( small_ length_messages );
2.7. repeat steps 2.2 and 2.3; // ignore choosing a threshold
} end if
else // inter-job contention is severe

do steps 2.1 to 2.7; //ignore choosing a threshold for each job
} // end of New_Mapping_Algorithm

Fig. 8 The pseudocode of the proposed mapping algorithm

Table 2 Simulation parameters

Parameter Value

Main memory bandwidth 4 GB/s

Remote memory access latency 10 % more than local memory access latency

Cache bandwidth Corresponds to AMD Opteron 2352 chip

Maximum size of common buffer in cache 1 MB

Network interface bandwidth 1 GB/s (corresponds to InfiniHost MT23108 4x)

Switching latency at the intermediate switch 100 ns (independent of message size)

and some with mixed patterns (which are named “Mixed_1” to “Mixed_ 6”). Table 3
displays the definition of fixed-pattern synthetic workloads, and Tables 4 and 5 show
the same matter for mixed-pattern synthetic workloads.

Since our main goal in this paper is to improve performance by reducing waiting
time of messages at server queues, we have considered some of the waiting time of
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Table 3 Message characteristics for fixed-pattern synthetic workloads

Job No. of processes Rate Length Message count

All-to-All Bcast/Scatter–Gather/Reduce–Linear

0 32 500 m/s* 2 MB 1500 2000

1 32 500 m/s 2 MB 1500 2000

2 32 100 m/s 2 MB 1500 2000

3 32 10 m/s 2 MB 1500 2000

4 32 1000 m/s 64 kB 1500 2000

5 32 100 m/s 64 kB 1500 2000

6 32 10 m/s 64 kB 1500 2000

7 32 1000 m/s 1 kB 1500 2000

*m/s means messages per second

Table 4 Message characteristics for Mixed_1 to Mixed_4 workloads

Job No. of
processes

Pattern Mixed_1 Mixed_2 Mixed_3 Mixed_4 Count

Rate Length Rate Length Rate Length Rate Length

0 64 All-to-All 100 m/s 64 kB 1000 m/s 64 kB 10 m/s 2 MB 100 m/s 2 MB 2000

1 64 Bcast/Scatter 100 m/s 64 kB 1000 m/s 64 kB 10 m/s 2 MB 100 m/s 2 MB 2000

2 64 Gather/Reduce 100 m/s 64 kB 1000 m/s 64 kB 10 m/s 2 MB 100 m/s 2 MB 2000

3 64 Linear 100 m/s 64 kB 1000 m/s 64 kB 10 m/s 2 MB 100 m/s 2 MB 2000

Table 5 Message characteristics for Mixed_5 and Mixed_6 workloads

Job No. of processes Pattern Rate Length Message count

Mixed_5 Mixed_6

0 32 24 All-to-All 10 m/s 2 MB 2000

1 32 24 Bcast/Scatter 10 m/s 2 MB 2000

2 32 24 Gather/Reduce 10 m/s 2 MB 2000

3 32 24 Linear 10 m/s 2 MB 2000

4 32 24 All-to-All 10 m/s 64 kB 2000

5 32 24 Bcast/Scatter 10 m/s 64 kB 2000

6 32 24 Gather/Reduce 10 m/s 64 kB 2000

7 32 24 Linear 10 m/s 64 kB 2000

messages at server queues (network interface and main memory) as our main metric
to compare the results. We compared our performance results with the results ob-
tained from the Blocked, Cyclic, DRB, and also with the results obtained from our
previous proposed mapping method. Figure 9 illustrates the performance results for
different workloads. In this figure, ‘Old_Map’ and ‘New_Map’ indicate our previous
mapping strategy and the new algorithm, respectively. To extract DRB results, we



Improving inter-node communications in multi-core clusters

Fig. 9 Waiting time of messages for synthetic workloads
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used Scotch v5.1 software [24]. In the figure, the red section of each bar indicates
total waiting time at main memories’ queues, and the blue section represents total
waiting time at network interfaces’ queues. Total waiting time of messages shown
is in mili-second. As it can be seen from Fig. 9, our new method has performed as
well as the Blocked, DRB, and Old_Map in the Bcast/Scatter and Gather/Reduce
scenarios. In the Bcast/Scatter scenario, since each parallel job (containing 32 pro-
cesses) has only one sender process and the rest of processes are just receivers, the
best strategy for mapping is to put all receiver processes near the sender. As a result,
the Blocked and DRB methods provide efficient results. In this scenario, the Cyclic
method has led to inefficient performance. Using this method, dominant part of com-
munications are inter-node communications, which use lower bandwidth of network
interface compared to the memory bandwidth, and consequently, the Cyclic has de-
graded the performance. In the Bcast/Scatter scenario and by using the new mapping
strategy, since average adjacency is equal to 1, no threshold is determined for the
jobs. In this case, the new method (as well as the Old_Map method) attempts to put
parallel processes near each other as much as possible. So, the results are similar to
the one obtained in the Blocked and DRB methods.

In the Gather/Reduce scenario, performance results have similar justifications as
the previous scenario. In All-to-All scenario, each process sends its messages to all
other processes. Since all parallel processes of a job cannot be lodged in just one
computing node, the volume of inter-node communications is high. Because of high
amount of inter-job contention in this workload, the Cyclic and Old_Map methods
(which simply distribute processes among the nodes) have led to unacceptable re-
sults. In this scenario, the New_Map method has detected high inter-job contention,
which has resulted efficient results as well as the Blocked and DRB. For the Linear
workload and by using the Cyclic approach, all communications are of inter-node
type. Knowing the lower throughput of network interface compared to the memory,
waiting time of messages for this method is the highest. In the Blocked and DRB
techniques, dominant part of communications is done as intra-node communications,
which has led to high waiting time at memories’ queues. The New_Map strategy (as
well as the Old_Map method) has performed very well and 53 % improvement in
performance is observed, compared to the best result of other methods. The reason is
that communications of processes are appropriately divided between intra-node and
inter-node communications. Moreover, processes that send large messages are placed
in different sockets. This reduces the contention on memories (and also on the net-
work interfaces). All of these issues make the New_Map algorithm a good strategy
for this kind of pattern.

By looking to the characteristics of parallel jobs defined in Mixed_1 to Mixed_6
workloads, we find that there are one or more parallel jobs with All-to-All pattern. Be-
cause of high number of parallel processes in these scenarios, even by using Blocked
or DRB method, a significant part of communications in the All-to-All jobs is done
as inter-node communications, and consequently, there is severe contention on the
interface. Despite this, other parallel jobs have low average adjacency and their vol-
ume of communication is not high. As a result, inter-job contention is not significant
and the New_Map method has decided to determine a threshold for just All-toAll
jobs. The New_Map technique blends the benefits of both Cyclic and Blocked ap-
proaches in these workloads. In other words, when facing to an All-to-All job, it acts
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Fig. 10 Workload finish time for different mapping strategies

Fig. 11 Total finish time of parallel jobs for different mapping strategies

like the Cyclic and distributes parallel processes between the nodes, and when facing
to other jobs (which have light communications) it does not determine any thresh-
old and behaves similar to the Blocked. The New_ Map strategy has gained 12.8 %,
21.9 %, 8.8 %, 23.7 %, 37.6 %, and 91.1 % performance improvement for Mixed_1 to
Mixed_6 scenarios, respectively, compared to the Cyclic approach. The new method
has also gained 7.7 %, 19.6 %, 0.3 %, 17.4 %, 12.2 %, and −1.5 % performance
improvement compared to the Old_Map technique. As we can see from the results,
selecting a better threshold has resulted in better performance in most scenarios com-
pared to the Old_Map technique. In addition to the waiting time of messages at server
queues, we have also used other metrics for our comparisons. Two other main met-
rics are workload finish time (the time at which execution of all parallel jobs in the
workload is finished) and total finish time of parallel jobs in each workload. Perfor-
mance results using these two metrics are shown in Figs. 10 and 11. Once again,
the New_Map method has generated efficient results in nearly all scenarios, which
indicates the robustness of the new strategy.
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Table 6 Real workload definitions

Job Benchmarks

HW_1 HW_2 MW LW_1 LW_2

0 SP (25-C)* IS (8-B) BT (25-B) SP (25-B) SP (25-C)

1 IS (32-C) FT (32-B) CG (32-B) CG (32-B) CG (32-C)

2 FT (32-B) IS (32-C) EP (32-B) EP (32-B) EP (32-C)

3 FT (16-B) MG (32-C) FT (32-B) MG (32-B) MG (32-C)

4 IS (16-C) CG (32-C) IS (32-B) – –

5 CG (32-C) IS (32-B) LU (25-B) – –

6 IS (8-B) MG (32-B) MG (32-B) – –

7 BT (25-C) CG (32-B) SP (25-B) – –

8 CG (16-B) BT (16-C) – – –

*SP (25-C) means SP benchmark with 25 processes in class C

5.2 Experimental results for real workloads

In addition to evaluating performance results for synthetic workloads, we have also
used real workloads in our comparisons. Real workloads were extracted from com-
munication behavior of NPB benchmarks. NPB benchmarks have different communi-
cation characteristics in terms of message size, message rate and communication pat-
tern. To simulate the behavior of NPB benchmarks, their traces were generated and
then fed to the simulator. Here, we defined 5 real workloads. Employed benchmarks
in each workload are listed in Table 6. Various kinds of benchmarks are used in each
real workload. For example, HW_1 and HW_2 are heavy (communication-intensive)
workloads, MW is a medium workload, and LW_1 and LW_2 are light workloads in
term of communication demand. In heavy workloads, IS and FT benchmarks are used
more than other benchmarks. These benchmarks have high communications and their
communication pattern is entirely of All-to-All type. MW, LW_1 and LW_2 scenar-
ios have been defined to show that our proposed algorithm have efficient performance
not only in communication-intensive workloads, but also in medium and light com-
munications. The performance results for 5 real workloads are illustrated in Fig. 12.
As expected, the Cyclic has performed better than the Blocked and DRB methods
in heavy workloads. In these workloads, the New_Map strategy has gained the best
results by achieving 24.7 % and 12.1 % performance improvement compared to the
Cyclic. It has also obtained 14.8 % and 16.9 % performance improvement compared
to the Old_Map method, which is caused by selecting a better threshold value. The
performance results for MW scenario show that there are no significant differences
between various mapping methods. Despite this, the new method is more efficient
than the others. In spite of light communications in LW_1, our strategy (together
with the Old_Map technique) has achieved acceptable performance, and its result
is even better in LW_2, which is somewhat more communication-intensive than the
LW_1. Unfortunately, the way in which we gathered the benchmark traces, limited
us to extract performance results using the “workload finish time” and “total finish
time of jobs” metrics for real workloads.
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Fig. 12 Waiting time of messages for real workloads

6 Conclusion

In this paper, we proposed a new mapping technique to assign parallel processes into
processing cores of a multi-core cluster aimed at reducing network interface con-
tention and expediting inter-node communications. The proposed technique, which
is based on queuing network modeling of a limited-size cluster, was compared to
some other well-known methods for synthetic and real workloads. Performance re-
sults revealed that our new mapping method can gain significant performance in many
workloads, especially in communication-intensive workloads which we observed up
to 91 % improvement compared to the Cyclic method. We also achieved improve-
ment in performance by up to 19.6 % compared to our previous strategy. Simplicity
of implementation of the new technique and its efficient performance for various
communication patterns make our algorithm an applicable mapping method to use in
recent high performance clusters.
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