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Abstract: Machine vision systems, which are being extensively used for intelligent transporta-

tion applications, such as traffic monitoring and automatic navigation, suffer from image

instability caused by environment unstable conditions. On the other hand, by increasing the use

of home video cameras which sometimes need to remove unwanted camera movement, which is

created by cameraman shaking hands, video stabilisation algorithms are being considered. The

video stabilisation process consists of three essential phases: global motion estimation,

intentional motion estimation and motion compensation. Motion estimation process is the main

time consuming part of global motion estimation phase. Using motion vectors extracted directly

from MPEG compressed video, instead of any other special feature, can increase the algorithm

generality. In addition, it provides the facility for integrating video stabilisation and video

compression subsystems and removing the block matching phase from video stabilisation

procedure. Elimination of any iterative outlier removal preprocessing and adaptive selection of

motion vectors has increased speed of the algorithm. Although deterministic approaches are

faster than the related probabilistic methods, they have essential problems in escaping from

local optima. For this purpose, particle filters, the ability of which is considerable when

submitted to non-linear systems with non-Gaussian noises, are utilised. Setting the parameters

of the particle filter using a fuzzy control system reduces the incorrect intentional camera

motion removal. The proposed method is simulated and applied to video stabilisation problem

and its high performance on various video sequences is demonstrated.

Keywords: video stabilisation, camera motion estimation, fuzzy control system, particle filter,

motion vectors, MPEG

1 INTRODUCTION

The purpose of video processing algorithms which

have been developed for image stabilisation, is

removing unwanted camera motions. The appropri-

ate speed and high accuracy of these algorithms

against noisy situations, presence of moving objects

and drastic changes in the image depth, are impor-

tant. On the other hand, different video stabilisation

subsystems require different levels of image stability.

Preserving the generality of the algorithm is also a

very considerable issue.

Several hardware mechanisms, both mechanical1,2

and electrical,3 have been developed for video sta-

bilisation. But the mechanical equipment generally is

not accurate and is very massive and heavy. In terms of

flexibility, the electrical equipment is extremely lim-

ited. Digital solutions3–6 can solve these problems well.

But the main problem of these algorithms is their high

time complexity and low efficiency in noisy sequences

containing moving objects.

The video stabilisation process consists of three

essential phases: global motion estimation, inten-

tional motion estimation and motion compensation.6

In the first step, universal movement of the camera
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that includes the jerky motion is extracted. Then in

the next step, the movements caused by the camera

vibration will be separated from desired camera

motion. The last step eliminates the unwanted camera

motion and generates the stable video sequence.

The accuracy of parameters obtained in the first

stage is very important and also strongly affects the

performance of other steps. Different motion estima-

tion methods7,8 have been proposed. Feature-based

approaches9,10 generally show a higher accuracy com-

pared to block matching ones.11,12 But using these

features or considering any other special conditions for

video sequences reduces the generality of the algo-

rithm. The features outgoing from the image area can

also make the camera motion estimation process

difficult. Reference 7 extracts lane lines and the road

vanishing point for video stabilisation. Reference 10

uses simple features, edges and corners, to viewfinder

alignment.

Motion vectors (MVs),13,14 which can be consid-

ered as global features, are very useful concept for the

motion estimation in various applications. Using

MVs instead of any other special feature can increase

the algorithm generalisation. In addition, it provides

the facility for integrating video stabilisation and

video compression subsystems, so the motion estima-

tion process can be removed from one of them.

References 11–14 have used MVs, which have been

obtained directly from H.264 video sequence,13,14 for

video stabilisation.

Probabilistic approaches that generally become an

estimation problem, contrary to deterministic appro-

aches that generally reduce to optimisation ones, have

high ability to escape from local optima.18 This fact is

the conclusion of a random search operation. Re-

ferences 15–21 have used Kalman filter (KF)25,26 for

motion estimation, but KF is not a powerful algorithm

in face of non-linear models with non-Gaussian

noise.18 References 23–26 have used particle filter

(PF)22–29 for motion estimation. All of them have

utilised pixel level information and scale invariant

features.30–32 Although scale invariant feature trans-

form often provides remarkable performance, in this

study, we will demonstrate that applying PFs on MVs

obtained directly from H.264 video sequence, can

stabilise unstable video with high accuracy. Figure 1

shows an overview of the proposed algorithm.

After extraction of global camera motion model, a

way to estimate the desired camera motion should be

adopted. For this purpose, different methods are

used: Ref. 36 uses a curve fitting method, Ref. 5

implements a fuzzy logic and Refs. 11–13 perform a

low-pass filter (LPF) to extract the model of inten-

tional camera motion. These methods which imple-

ment the process of video stabilisation by smoothing

the parameters of camera global motion, remove

portions of desired camera motions wrongly. In such

circumstances, cameraman will be felt kind of

restrictions during the filming. So it seems that

changing the concept of stabilisation from smoothing

to camera motion prediction can produce better

results. Probabilistic approaches are powerful solu-

tions to predict unknown states of the considered

system. References 24 and 38 estimate parameters of

camera intentional motion using a KF.

Generally, in the paper, we try to provide a video

stabilisation algorithm that its final output has best

matching with desired camera motion. Using a fuzzy

control system instead of a complicated crispy mathe-

matical formulation simplifies the parameters of PF;

in addition, the smoothing ability of the PF can be

increased. In summary, the novel contributions of

this paper are the following:

N extraction of the required MV fields from predic-

tion vector fields directly available in compressed

video sequence

N determination of camera global motion using PF

that is entirely based on information available in

MV level

N elimination of any iterative MV outlier removal by

a fast thresholding process that has a good

performance on videos that have drastic changes

in depth of scene

N using the PF and its online smoothing ability to

estimate the intentional camera motion

N specifying the parameters of the PF by performing

a simple fuzzy control system

N offering a fully probabilistic approach based on PF

for video stabilisation.

The rest of this paper is organised as follows: in

Section 2, the basis of video stabilisation strategies

1 Proposed approach overview
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and their disadvantages are presented. In Section 3,

we describe the framework of estimation of inter-

frame motion from H.264 videos. Section 4 explains

the proposed algorithm for estimation of the camera

global motion using PF. In Section 5, we discuss the

way of dealing with the intentional motion. Section 6

represents a short description for the compensation

algorithm. In Section 7, evaluation criteria for the

estimation accuracy based on MV field are intro-

duced. Experimental results are presented in Section

8 and Section 9 draws a conclusion.

2 PROBLEM STATEMENT

Many motion models have been proposed in litera-

tures. A 2D translation model with two parameters,39 a

2D rigid model with four parameters,40 a 2D affine

model with six parameters,41 a 2.5D model with seven

parameters42 and a 3D model with nine parameters,43

are instances of these models. Despite its simplicity and

speed, restricted affine model with four parameters,18

combined with PFs, has suitable performance in many

video stabilisation applications. According to this 2D

motion model, the displacement of point (x,y) to (x9,y9)

can be represented as follows:
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where a, Q, Tx and Ty are scaling, rotation and

translation parameters along x and y axes. By

extending equation (1), the following relationship

exists between the coordinate of i-block centre and

its corresponding MV:
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By applying equation (2) for each of the image blocks,

an equation system will be formed that the number of

its equations is more than unknown parameters. For

solving this equation system, least square error (LSE)

method18 can be utilised. The LSE method is severely

sensitive to outliers in MVs. More details can be found

in Ref. 18. It will be shown that the PF can obtain more

accurate parameters for the camera global motion.

Using the camera global motion model and accord-

ing to selected motion model, unwanted camera

motion must be separated from desired camera motion.

Since the frequency of the unwanted camera movement

is usually higher than the intentional camera

motion,15,17 a LPF can be utilised for removing the

unwanted camera movement from the camera global

motion. The proposed approach can be used also for

offline applications, but because the proposed algo-

rithm is applied for online applications, only informa-

tion of the current frame and the former frames will be

available and is compared with a causal LPF. This filter

is, in fact, a weighted averaging operation on the global

motion in a certain period of time T as:

hd
t ~

XT

i~1
wih

g
t{i (3)

However, the problem of this method is that if the

window size T is considered as a small value, according

to Fig. 2a, the power of smoothing in this filter is

severely reduced. Subsequently, a large part of vibra-

tions will not be removed. In contrast, with the greater

window size (Fig. 2b), intentional motion estimation

will not be done appropriately in sudden changes in

the parameters of the camera movements. In the rest of

the paper, the proposed methods for estimation of the

camera global and intentional motion that are based

on PF will be described.

3 INTER-FRAME MOTION CALCULATION

FROM H.264

In the proposed structure, the video stabiliser is

integrated with H.264 coder in the decoder side.

2 The estimation of Tx in the intentional model, using the LPF with (a) T53 and (b) T530
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Prediction vectors which contain motion information

between current and reference frames are directly

available, in H.264 compression standard. But the

main problem is that these prediction vectors do not

necessarily relate to consecutive frames. For example,

consider the Group of Pictures, structure in the form

of IPB. In this structure, prediction vectors of P-

frames depict displacement of this frame relative to

the I-frame.

For estimation of the P-frame MVs relative to the

previous frame, a simple interpolation is applied. So,

magnitudes of the prediction vectors are divided to the

distance of the current and reference frames. So the

MVs which are required for the camera global motion

estimation process will be achieved. While this distance

becomes a low value, the estimation would be more

accurate. The proposed algorithm for extraction of the

MVs from compressed video sequences can be seen in

Fig. 3.

After extraction of the required information,

according to the interpolation methods in Table 1,

similar to proposed methods in Ref. 15, MV field can

be produced. Using this method, inter-frame MV field

can be calculated accurately, but another problem still

stays. Block matching process that is done in the H.264

encoder, only considers similarity and does not

consider any motion information. Thus, the earned

MVs do not necessarily show the macro-block move-

ments. These MVs will be found as outliers in the MV

field that are usually originated from uniform textures

and changes in scene lighting. Moving objects can also

be considered as other sources of outliers.

In the PF algorithm, which is used for camera global

motion estimation, while the initial state becomes

more accurate, the population would be more appro-

priate. So the smaller noise and the particle number

would be required and time complexity of the

algorithm would be less. Therefore, at first, the MVs

that their distances from the MV mean are higher than

a threshold, T1, are removed. In the next step, this

thresholding is performed for the MV mode, T2. The

selected distance measure is Mahalanobis one that

projects data correlation and is a scale invariant

distance measurement. Mahalanobis distance mea-

surement can be evaluated as:

D vi
t

� �
~ vi

t{M t
� �T

S{1
t vi

t{M t
� �

(4)

where St is the covariance matrix of the MV field at the

time step t. Subsequent to adaptive selection of MVs,

the least square (LS) method is used to estimate the

initial state.

4 GLOBAL MOTION ESTIMATION USING PF

By considering the global camera motion model as a

dynamic system, and available MV field of frame t as

a noisy observation of this system, motion estimation

can be done by predicting unknown state of the

system in time step t, ht5[a,Q,Tx,Ty]. State transition

and observation models, Et and Ot, respectively, are

defined as follows:

ht~Et ht{1,Ut{1ð Þ (5)

3 Extraction of the motion vectors from compressed video sequence

Table 1 Interpolation of MVs

Macro-block type

Distance from

MVPrevious reference Next reference

Intra — — avg(mv[n22], mv[n21])
Forward n — pvF/n
Backward — m 2pvB/m
Bi-directional n m Avg(pvF/n, 2pvB/m)
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Yt~Ot ht,Ntð Þ (6)

Ut and Nt, which are the system and the observation

noise, respectively, have been considered as Gaussian

functions. These Gaussian functions are specialised

by a constant zero mean and a covariance adjusted to

0.5. The state transition and observation models are

also considered as linear functions. A particle is a

weighted sample which can estimate the posterior

density.26,32,33 Each particle, Pt~f^
ht,wtg, is deter-

mined by its estimated state and corresponding

weight. The weight wt is normalised proportional to

the prior probability P(Ytj^ht). Yt~½vo,1
t
:::vo,n

t � is the

observation vector at moment t which contains the

noisy MV field information in our desired problem.

Y1:t is defined as the set of observations in a time

window between 1 and t.

To initialise the PFs, K samples of fhi
tg

K
i~1, K

samples of fU i
tg

K
i~1 and K noise samples fN i

tg
K
i~1, are

drawn from the P(ht21|Y1: t21) and noise probability

functions, Ut21 and Nt, respectively. It should be

noted that in the utilised PF for camera global

motion estimation, a fixed number of particles are

considered. Obviously, if the particle number is

increased, better accuracy will be achieved for the

estimated model but the algorithm speed is reduced.

According to the experiments, K550 particles are

considered for each iteration of the PF algorithm. It

has been shown that with this number of particles, we

can be close to the desired accuracy with a plausible

speed. The test results of determining the optimal

particle number are presented in the following. By

substituting these samples in equations (5) and (6), K

observations fY i
t g

K
i~1 and K estimations for ht can be

obtained. Then the weights of particles are calculated

as follows:

wi
t!

P(Y i
t jht)P(htjht{1)

g(htjht{1,Y1:t)
(7)

where g( ) is a proposal distribution. In this paper, an

approach similar to sequential importance re-sam-

pling filter26,32 is used and an approximation of

P(htjht{1)&g(htjht{1,Y1:t) is considered.18 Therefore,

equation (7) can be simplified as:

wi
t!P(Y i

t jht) (8)

Therefore, according to available MV field related to

the noisy observation MVs and the particle MVs, the

weight of estimated model for each particle in frame t

is determined as:

wi
t~ P

nt

j~1
P(v

i,j
t jv

o,j
t )~ P

nt

j~1
N(v

i,j
t ; m

j
t,S

j
t) (9)

where P( ) is a bivariate Gaussian probability density

function, which is defined for each MV. These

probability functions are defined as follows:

N(v
i,j
t ; m

j
t,S

j
t)~

1

2p S
j
t

��� ���� �1=2
e{1=2 v

i,j
t {m

j
tð ÞT S

j
tð Þ

{1
v

i,j
t {m

j
tð Þ

(10)

nt shows the number of MVs which will vary in each

frame. The covariance matrices and mean vectors are

adjusted to the following fix values:

mj
t~v

o,j
t ½v

o,j
t,x,v

o,j
t,y� (11)

S
j
t~S~

0:3 0

0 0:3

� �
(12)

where v
o,j
t,x and v

o,j
t,y are the horizontal and vertical

components of jth MV in the frame t, respectively.

Then, the weights of each particle are normalised as:

wi
t~

wi
tPN

i~1

wi
t

(13)

so the estimated state can be evaluated as:

^
ht~ arg max

ht

P(htjY1:t)& arg max
ht

wi
t (14)

5 INTENTIONAL CAMERA MOTION

ESTIMATION BY THE FUZZY PF

In this section, a same PF algorithm, which is

employed in the previous stage, is used. Parameters

of the camera intentional and global motion in frame t

are considered as the dynamic system and its noisy

observations, respectively. Unlike before, the para-

meters of the PF are determined adaptively for each

frame. So, a simple fuzzy control system, which is

described in the following, is employed.

Roles of the two factors, particle number and

variance of the system noise, are very important in

generating of the particles population. While the inter-

frame variations of the camera global motion para-

meters become more and continue for a time, a greater

number of particles will be required for covering the

search space. If not, reducing the number of particles

can increase the speed of the proposed algorithm. On

the other hand, if the parameters of the global motion

have high fluctuations in consecutive frames, it is
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necessary to increase the system noise variance to

improve the covering of the search space by particles

population. Otherwise, the accuracy of the predictions

can be increased by decreasing the system noise

variance.

Thus by providing a simple fuzzy approach with

minimal rules, the particle number and the variance

of the system noise are calculated adaptively. Table 2

shows the nine rules that are used in the control

system. This control system has two inputs and one

output. The first defined input determines the dif-

ference of the estimated parameters of the global and

intentional camera motion and the second one

evaluates the continuation of the fluctuations. The

introduced inputs can be defined as:

input1t~j^ht{htj (15)

input2t~jinput1t{input1t{1j (16)

If the output of this fuzzy control system is shown by

Fout, the particle number and variance of the system

noise can be controlled as:

Numt!Fout|Nummax (17)

Vart!Fout|Varmax (18)

The lower and the upper limits of particle number

and the noise variance are considered 20–100 samples

and 0.1–0.9, respectively. On the other hand, since the

camera shaking is generally translation movement,

the noise variances of rotation and zoom are

considered 10 times smaller than the noise variance

of displacement along x and y axes. Specifying the

parameters of the PF using the fuzzy control system

improves the elimination of the unwanted camera

movements and also reduces the incorrect intentional

camera motion removal.

Figure 4 depicts the fuzzy terms of the input and

the output in the designed fuzzy control system.

According to the mentioned definitions, the changes

of the output relative to the inputs can be displayed

as the surface in Fig. 5.

After the generation of the particles population,

using a method similar to the previous step and

considering P (htjht{1)&g(htjht{1,Z1:t), the weight of

each particle can be calculated as:

wi
t!P(Zi

tjh
i
t) (19)

Now, with the assumption of each particle’s esti-

mated model
^
hi

t as the intentional camera motion and

the camera global motion as the system’s noisy

observation, the weight of each particle can be

calculated as follows:

wi
t~

1

jj^hi
t{Zi

tjj
~

1

j^hi
t{Zi

tj
(20)

In other words, for weighting the particles, the

Euclidean distance || || is used. Whatever the estima-

tion is closer to the desired state, related particle will

have a bigger weight.

Table 2 Rules of the proposed fuzzy control system

Input 1
Z P B

Input 2 Z Z P P Z5Zero
P P P P P5Positive
B P P B B5Big-positive

4 Definitions of the (a) first input, (b) second input and (c) output of proposed fuzzy control system

5 Changes of the output relative to the inputs of the

proposed fuzzy control system
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6 MOTION COMPENSATION

Subsequently, by considering a certain frame, for

example the first frame, as the reference frame,

motion compensation process can be accomplished

as follows:

X S
t,i~(G�t{1 . . .� G1)�(D�t{1 . . .�D1)�Xt,i~

(G�t{1 . . .� Ga
t{1)�(D�t{1 . . .�Da

t{1)�Xt,i (21)

where Xt,i and X S
t,i are coordinates of ith pixel in the

original and the stabilised frame t. Gt and Dt are the

affine matrices of the global and intentional models,

respectively. Ga
t and Da

t are the accumulated global

and intentional models for frames 1 to t. In other

words, in the first step, the location of the current

frame is transformed to the first frame position.

Subsequently, by applying the transformation of the

desired camera motion, the intentional location of the

current frame at moment t can be extracted.

7 EVALUATION CRITERIA FOR THE

ESTIMATION ACCURACY

For evaluation of the proposed algorithms, two

strategies have been taken. The first method is used

when the models of the global and intentional camera

motion are completely known. In the same regard,

predetermined parameters of the global and inten-

tional camera motion are applied to the frames of the

desired video sequence. Using the videos that are

made manually, the accuracy of the obtained motion

parameters is evaluated using the mean square error

(MSE) criterion. If the MV field of the ground-truth

model of camera motion is extracted according to

equation (2), the MSE criterion in frame t can be

defined as follows:

MSE(t)~
1

Nmv

XNmv

i~1

(V t
i,x{

^
V t

i,x)2z(V t
i,y{

^
V t

i,y)2
h i

(22)

where V t
i and

^
V t

i are the ith MVs in the correspond-

ing MV field of the ground-truth and the estimated

models of the camera motion. The estimated camera

motion model will be an accurate model if a low MSE

appears. Reference 18 has used the MSE criterion for

evaluation of the accuracy of the obtained parameters

in their proposed algorithm. But the main problem is

that their method cannot be employed in real video

sequences.

The second method, which can also be used for real

video sequences, is based on this principle that during

the stabilisation process, the differences between

consecutive frames in the video sequence will be

reduced. Accordingly, the inter-frame transformation

fidelity (ITF) is used for assessment of the video

stability. The ITF criterion can be defined as follows:

ITF~
1

Nframe{1

XNframe{1

t~1

PSNR(t) (23)

PSNR(t)~10log10

Imax

MSE(t)
(24)

MSE(t)~
1

Npixel

XNpixel

i~1

(pt
i{ptz1

i )2 (25)

where Nframe, Npixel and Imax are the frame number of

the video sequences, number of pixels found in the

images and the maximum possible intensity of the

pixels. PSNR(t) is the peak signal to noise ratio of

frame t and MSE(t) has a same definition as

equation (22) that compares the corresponding pixels

in two consecutive frames. Higher ITF indicates the

more stability of video sequence. References 28 and

44 have used this criterion for evaluation of their

proposed algorithm stabilisation ability.

8 EXPERIMENTAL RESULTS

We evaluated the efficiency of the proposed method

through extensive experimental testing (the resulting

videos can be accessed at http://webpages.iust.ac.ir/

masmoh/proj/stabilisation.html). The required pre-

diction vectors are extracted by manipulation of the

JM 14.2 reference software decoder source code from

H.264 video sequences. All features are active and the

Group of Pictures structure is considered as IBP.

After extraction of the MV fields, according to the

proposed outlier removal procedure, two threshold-

ings are performed. Although the thresholds have a

high tolerance, with regard to numerous tests, these

thresholds are set to T1515 and T2520. As was said,

a PF algorithm with a fixed number of particles is

used for estimation of the global camera motion. So

the effects of the particle number in accuracy and

speed of the proposed algorithm are investigated. The

results can be seen in Table 3. The reported execution

time does not include the MV extraction phase.

As can be seen, with 50 particles, the desired

accuracy can be achieved. More particles do not
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provide a sensible increment in the accuracy and also

decrease the speed of the algorithm. Since the MSE

criterion requires the ground-truth model of the

camera motion, four video sequences, with certain

intentional and vibration models, are manually

prepared. So an MATLAB script is provide that

randomly [xyN(0,3), yyN(0,3), hyN(0,0.1) and

ayN(0,0.1)] select the affine parameters for each

frame. Using these values and wrapping a window on

a motionless image can construct the desired video

sequences. Figure 6 compares the errors of global

motions which are estimated by the LS and proposed

methods over all frames of video sequence 3.

Table 4 shows the MSE average of the global

model estimation for manually constructed video

sequences.

It is evident that the error of the proposed

approach is always less than that of the LS method.

While the video motion becomes more complex,

difference of the errors becomes more distinctive for

the LS and proposed methods. Figure 7a shows the

estimated camera intentional motion by the proposed

algorithm for a video sequence along x axis. As can

be observed, camera vibrations have been removed

and also the intentional camera motion is tracked

properly. Figure 7b illustrates the changes of the

system noise variance over all frames. The noise

variance is increased in frame 30, so the estimated

motion rapidly approaches to the intentional camera

motion in next frames.

As another example, the motion parameters esti-

mated in a real video stream along x and y axes for the

global and the intentional camera motion are shown in

Fig. 8.

Table 5 compares the MSE average of the estimated

intentional camera motion in the proposed method

and the LPF with window size 20 for constructed

video sequences. As can be derived, the proposed

method predicts the intentional camera motion with a

smaller MSE.

Figure 9 shows sample results for several video

sequences. Drastic changes in the depth of video, the

uniform textures, moving objects and any compli-

cated camera motions, including sudden changes in

the intentional camera movement, are handled pro-

perly. The video sequence stability is clearly obser-

vable in all figures.

Figure 10 shows the ITF of the 24 video sequences

in the original and stabilised mode related to our

proposed method and Ref. 15. All resulted video

sequences have higher ITF compared to original

videos, which demonstrates the final video sequence

stability. Reference 15 is a method based on the block

matching algorithm integrated with MPEG4 and

H.264. The approach proposed in Ref. 15 has shown

a high degree of robustness, but its performances are

limited by the adopted translational model (e.g.

rotation is not taken into account) and the intentional

motion estimation algorithm (simple LPF). According

to Fig. 10, the proposed approach has higher ITF

than15 for all video sequences. Our algorithm was

implemented in a standard MATLAB environment,

without using any techniques to speed up the

algorithm. Running time was about 1.6 frames per

second (0.6, 0.6, 0.2 and 0.2 fps for MV extraction,

global motion estimation, intentional motion estima-

tion and motion compensation) on a laptop with a DC

2.5 G CPU and 3 G memory. The image size in all

Table 3 MSE average and process time for different

numbers of particles

Particle number MSE Time (s)

10 8.836 0.2
30 5.722 0.6
50 4.191 0.9
70 3.924 1.3
90 3.665 2.7

6 MSE of the proposed and the LS methods

Table 4 Comparison of the MSE average for the LS and

the proposed approaches

Sequence no. Proposed method LS method

1 4.237 7.197
2 3.711 8.419
3 6.362 8.681
4 0.181 0.195
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video sequences is 3206240 pixels. Naturally, by

hardware implementation, programming in low-level

languages and the use of parallel processing concepts,

a much higher processing rate can be achieved.

9 CONCLUSION

In this paper, a full PF-based approach was presented

for the camera motion estimation which uses extracted

8 Comparison of the achieved models of the global and intentional camera motion for one of

video sequences along two axes: (a) x; (b) y

9 Video stabilisation result: (a) original unstable; (b) stabilised video sequences

10 ITF for the original and stabilised video sequences

relative to the proposed approach and Ref. 15

Table 5 Comparison of the MSE average for the LPF

and the proposed approaches

Sequence no. Proposed method Low-pass filter method

1 0.056 7.717
2 1.933 7.564
3 1.649 5.615
4 0.113 0.147

7 (a) Comparison of the achieved camera motion parameters along x axis for one of manually

constructed video sequences and (b) adaptive changes of the system noise according to the pro-

posed fuzzy control system

PROBABILISTIC APPROACH FOR VIDEO STABILISATION 9



prediction MVs directly from the compressed video.

The MV utilisation has increased the generality of the

proposed method. Removing the block or feature

matching and any iterative outlier removal process,

speeds up the proposed approach. Selection of the

MVs adaptively increases the algorithm robustness

against moving objects and drastic changes in the

image depth. Using the PF not only increases the

accuracy of the estimated camera global motion but

also reduces the effects of incorrect intentional camera

motion removal. Utilising a fuzzy control system

simplifies the determination of the PF parameters.

Finally, the high performance of the algorithm was

demonstrated through various experiments for video

stabilisation.

Possible topics for future work include improving

the initial population used in any iteration of the PF

algorithms. If the initial population is considered

closer to the desired model, the results will be more

accurate. Parallel hardware implementation of the

proposed approach, integrated with the other intel-

ligent subsystems, is another issue that should be

investigated.

On the other hand, although our algorithm has high

performance even in critical conditions, it sometimes

fails. The presence of homogeneous regions, periodic

patterns and sudden illumination changes, if not

properly managed,12 can degrade the performance of

proposed method. Previous approaches generally do

not work properly in these conditions too.11 So for the

further work, we try to solve these problems.
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