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Abstract: Bag of visual words model has recently attracted much attention from computer vision society because of its notable
success in analysing images and exploring their content. This study improves this model by utilising the adjacency information
between words. To explore this information, a binary tree structure is constructed from the visual words in order to model the is –
a relationships in the vocabulary. Informative nodes of this tree are extracted by using the χ2 criterion and are used to capture the
adjacency information of visual words. This approach is a simple and computationally effective way for modelling the spatial
relations of visual words, which improves the image classification performance. The authors evaluated our method for visual
classification of three known datasets: 15 natural scenes, Caltech-101 and Graz-01.
1 Introduction

As the acquiring and storing of images and multimedia data is
becoming fast and easy, the related databases become very
large. In this situation, developing methods to manage such
databases becomes more important. Classifying images
based on their content is one of the methods which
determine the category of an image among several
categories. However, this task is a challenging problem in
the real world since we encounter a number of difficulties,
where there exists occlusion, background clutter and
lighting changes in images. To deal with these difficulties,
numerous new methods have been developed to
describe images based on local features. Some of the recent
methods for classifying images represent each image as
a set of patches or regions, described by various
descriptors. This representation is called bag of visual
words (BoW) and provides a set of local descriptions for an
image [1].
The process of BoW construction starts by extraction of

local patches from the image. From this point of view,
several methods have been proposed in the literature. For
example, some researchers obtain local regions by using
regular grids that segment images by horizontal and vertical
lines [2, 3], or use variable size rectangular patches based
on the complexity of the regions [4]. Furthermore, some
may use blob detection algorithms such as difference of
Gaussian [5], Harris detector [6] or Hessian matrix [7] to
find salient points, which are placed on the corners and
edges of the objects [1, 8, 9].
Salient patch detection is followed by its description using

local descriptors like scale invariant feature transform (SIFT)
[5], speeded up robust features (SURF) [7] and so on.
Previous studies have shown that the SIFT descriptor
extracts robust features from an image, which are more
invariant to affine transformations than others [10]. Besides,
some studies showed that other features like colour, texture
and edge histograms, or a combination of them, could
produce desirable results in special environments [11].
However, this method creates difficulty for the learning
process, mostly because it uses different vectors dimension
for each image [12]. To deal with this problem, similar
patches are clustered in the same groups to constitute a
cluster. Centres of these clusters are called visual words and
the set of cluster centroids is treated as a vocabulary.
To represent image patches by visual words, each local

description of the image should be assigned to one or more
visual words. At last, by constructing the histogram of visual
words distribution in the image, a holistic representation of
the image, known as BoW model, is obtained.
Despite the success of BoW representation in image

classification, this type of representation does not consider
the spatial information and this is because of the fact that
the histogram representation naturally neglects the spatial
location of visual words and spatial relations between them.
In text categorisation studies, this problem has been solved
by introducing the N-gram terms; a model that considers the
relation between the words of a text. On the other hand, the
huge number of terms produced by the N-gram model,
creates difficulty for BoW image representation and further
processes; however, these relations convey important
information about the content of the image. For example, a
white patch can be part of a sheep, cloud or moon if it be
surrounded by green grass, blue sky or dark area,
respectively. To consider these relationships, we calculate
the number of times each pair of the combination of words
occurs in a certain neighbourhood and construct the bag of
N-grams inspired by Li et al. [13]. To reduce the number of
words combinations, we tried to generate new words from
the vocabulary and use them to model the adjacencies.



The number of times that each pair of new words occurs in the
vicinity is a new feature, which is concatenated to the BoW
representation. The classification performance of this
representation is verified on three datasets: 15 natural scenes
[14], Caltech-101 [15] and Graz-01 [16]. Experimental
results on these datasets confirm that our method, which
includes spatial information, outperforms the traditional
BoW and demonstrates the importance of spatial
information in image categorisation tasks. Furthermore,
since instead of visual words, fewer terms are used for
modelling words adjacencies, it is computationally effective
and does not need much memory space.
The remaining sections of this paper are organised as

follows. The related works are reviewed in Section 2. In
Section 3, the proposed method is explained in detail.
Section 4 presents the experimental results and Section 5
concludes the paper.
2 Related works

As of today, many studies are trying to improve BoW
representation with respect to several aspects. For example,
although the traditional approach for feature vectors
quantisation is to employ k-means clustering on the feature
space [1, 2, 17, 18], many researchers explored new
methods for this purpose. ‘Randomly sampled codebooks’
proposed by Nowak et al. [19], is one of these methods, in
which some of the feature vectors are randomly selected as
visual words. Although this method does not show superior
performance against the k-means, but because of its
simplicity and computational effectiveness, it can be used
when the number of feature vectors is very high. Another
study proposed is radius-based clustering, which finds
visual words that each represents a distinct part of the
feature space [3]. In this algorithm, all the features within a
fixed radius of similarity are assigned to a certain cluster.
This algorithm outperforms the standard k-means since it
generates an even distribution of visual words over the
feature space compared with the k-means algorithm, which
generates most of the clusters in the high-frequency area of
the feature space.
One problem of the clustering algorithms for vocabulary

construction is that many of them fail to converge because
of the large amount of image patches. Therefore, in [20], a
hierarchical k-means algorithm was proposed, in which a
vocabulary tree is constructed by applying k-means within
each partition of the tree. In another study and in order to
obtain more informative details of local patches, Yang et al.
[21] utilise two vocabularies instead of one. One vocabulary
is constructed by colour features whereas the other is
obtained by quantising local binary pattern features.
Another aspect of the BoW construction, investigated by

researchers, is the way that local descriptors are assigned to
visual words. This procedure is known as the weighting
scheme and can be performed in several ways. Some
authors have used hard weighting methods, in which each
local descriptor of the image is assigned to its nearest visual
word in the vocabulary [1, 2]. On the other hand, recent
methods use soft weighting approaches, where each local
feature can be assigned to more than one word with
different weights [12, 22, 23]. These weights are usually
determined by the distances between the local descriptor
and visual word vectors [12, 22]. Previous studies
have shown that soft weighting approaches outperform
hard weighting ones since they effectively model the
correlation between visual words, where different visual
words can represent one local descriptor with various
weights [22].
Since BoW representation naturally neglects spatial

information of images, this information has been considered
separately in some previous works. One of the first attempts
in this area was proposed by Lazebnik et al. [14], which is
based on partitioning an image into increasingly finer grids.
After computing the frequencies of visual words in each
grid cell, the BoWs of the cells are concatenated to each
other and thus a representation of the image, conveying the
spatial location of visual words, is obtained. The
importance of this method becomes obvious when we note
that the location of visual words in the image conveys
essential information about its content. For example, a blue
patch, located above the image, is probably representing a
piece of sky whereas if this patch be in the bottom of the
image, it may represent part of a sea.
Tirilly et al. [24] presented another work in this area by

introducing visual sentences. They order the words of an
image in relation to a certain axis in the image and
construct visual sentences, which contain the spatial
relations between words. One problem in their method is
that since it projects all the local descriptors to the main
axis, it does not consider the spatial relations in all
directions and only includes the relations in the main axis
direction.
Wu et al. [25], introduced another approach to capture the

proximity information. Their model represents three kinds of
relation including unigram, bigram and trigram between
visual words. However, this model creates difficulty for the
learning process, because it uses all the visual words to
construct bigram and trigram and produces a huge number
of terms. This problem is solved in [26], where just a small
fraction of all words combinations are used for modelling
the proximity information. To find these word pairs, the
authors measured confidence values that each show by how
much two neighbouring visual words are relevant. Word
pairs with high confidences were concatenated to BoW
representation. However, the constraint of this algorithm
appears when the size of the vocabulary becomes large
since for informative word pairs selection, we have to
construct all the words combinations. In this case, counting
all the words combinations, even for small vocabularies, is
very time-consuming. To deal with this problem, we
propose a new approach, based on extending our
preliminary work [27] with a method to construct
informative words, producing results on a new dataset and
comparison with other image representations. The
informative nodes are obtained from the nodes of an
ontology structure and are appropriate for words relation
modelling. This claim is verified by Section 4, where we
tested our algorithm on three known datasets: 15 natural
scenes, Caltech-101 and Graz-01.
3 Proposed method

This work focuses on spatial information modelling and is
performed in two steps. First, we use the spatial pyramid
matching (SPM) approach [14] and partition the image into
fine subregions to obtain the histogram of local features
inside each subregion. Next, we obtain the number of
occurrences of visual word pairs and concatenate that to the
BoW representation as new features. The following
subsections present this procedure in detail.



3.1 BoW representation

As described in Section 2, after extracting the local patches,
every patch has to be described by using SIFT descriptors.
Since the previous studies have shown that sampling on a
regular grid outperforms other approaches such as interest
point detectors, we use the SIFT descriptor, sampled on a
regular grid [2].
Next, each local descriptor of the image should be assigned

to one or more visual words. In this paper, we use the hard
weighting approach by mapping every local patch to one
visual word [1]. To do so, assume that {r1, r2, …, rn}
represents the local descriptors in the image and V = {ω1,
ω2, …, ωk} represents the vocabulary. With these
assumptions the hard histogram of visual words is
computed as

HBoW vj

( )
=

∑n
i=1

1, if vj = dist vj, ri

( )( )
0, otherwise

{
(1)

where ri is the ith patch of the image and ωj is the jth word in
the vocabulary. Clearly, soft weighting approaches provide
better performance in classification, but since we intend to
compare our method with classical methods based on the
importance of spatial information, we choose hard
weighting for our algorithm.
Fig. 1 Example of visual ontology

Leaves are visual words and represented by ωi, and the internal nodes are
general words represented by Wj
3.2 Spatial pyramid matching

The BoW representation described above ignores some useful
information of the image. For example, there is no way to find
out how many times a certain visual word takes place in a
specific part of the image. To combine this information
with the BoW, we use SPM, proposed by Lazebnik et al.
[14], to partition the image into rectangular regions.
In detail, pyramid matching works by placing a sequence of

increasingly finer grids over the feature space and taking a
weighted sum of the number of matches that occur at each
level of resolution. At any fixed resolution, two points
which fall into the same cell are matched. Matches found at
finer resolutions are given higher weight compared with
matches found at coarser resolutions. More specifically, a
sequence of grids is constructed at resolutions 0… L, such
that the grid at level l has 2l cells along each dimension, for
a total of D = 2dl cells. Let Hl

X and Hl
Y denote the

histograms of X and Y at this resolution, so that Hl
X (i) and

Hl
Y (i) are the numbers of points from X and Y that fall into

the ith cell of the grid. Then, the histogram intersection
function finds the number of matches at level l.

I Hl
X , H

l
Y

( ) = ∑D
i=1

min Hl
X i( ), Hl

Y (i)
( )

(2)

Note that the number of matches found at level l also includes
all the matches found at the finer level l + 1. Therefore the
number of new matches found at level l is given by Il −
Il+1 for l = 0, …, L− 1 . The weight associated with level l
is set to 1/2L− l, which is inversely proportional to the
cellwidth at that level. Intuitively, since the matches found
in larger cells involve dissimilar features, they should be
weighted lower. Hence, the following definition was
obtained for the pyramid match kernel

kl X , Y( ) = IL +
∑L−1

l=0

1

2L−l
I l − I l+1( )

= 1

2L
I0 +

∑L
l=1

1

2L−l+1
I l (3)

To combine the pyramid matching kernel with the spatial
location of words in the image, the elements of X and Y are
used to represent the coordinates of the visual words in the
image. Therefore, by placing increasingly fine grids on the
coordinates of the visual words, the spatial information is
combined with the BoW representation.

3.3 Spatial relation modelling

The relations between the visual words in an image convey
important information about its content; however, this
information has been neglected in the traditional BoW
model. In the text categorisation area, relations between
words are obtained by using the N-gram model and the
conditional probability of the word sequences is estimated
by using this model. Nonetheless, this model was not
applied to the image representation in previous studies
because of the fact that considering the N-gram model for
images consumes too much memory space, which makes it
impractical. To deal with this problem inspired by Jiang
and Ngo [28], we proposed a method based on the visual
ontology construction.
3.3.1 Visual ontology construction: As mentioned
before, spatial relations between visual words can be used
as additional information to improve the classification
performance. However, considering this information similar
to what is used in the text categorisation area and
constructing N-gram terms is impractical. For example, if
the size of the vocabulary is 200, the number of bigrams
will be >20 000, which is very high and it is not practical
to consider it in the BoW representation.
To effectively model the spatial relation, we first construct

a tree from the visual words and use the informative internal
nodes of this ontology tree for adjacency modelling. An
example of such ontology, which consists of eight visual
words, is shown in Fig. 1. The leaves of this tree are the
visual words and the internal nodes, which constitute much
fewer pairs and are used for words adjacency modelling.
For instance, instead of using 200 visual words we consider
only 25 nodes of their ancestors and obtain 325 bigrams.



In general, the number of bigrams obtained by the n words
is computed as follows

number of Bi-grams = n
2

( )
+ n = n(n+ 1)

2
(4)

To construct a visual ontology like the one shown in Fig. 1,
we use an agglomerative clustering algorithm starting with
the visual words of the vocabulary [29]. For example, in
Fig. 1, the algorithm starts with {ω1, ω2, …, ω8} and tries
to find the most similar nodes to combine them. The
similarity between two nodes is computed by measuring the
Euclidean distance between the feature vectors of those
nodes. Now, let us assume that the most similar nodes in
Fig. 1 are ω1 and ω2. W1 is obtained by combining these
nodes and its feature vector is computed by averaging the
feature vectors of its children. The same procedure employs
ω3, ω4 to construct W2. This process continues until just
one node remains, that is, the root of the ontology (W7 in
Fig. 1).
The described method for ontology construction slightly

differs from agglomerative clustering where in the latter
case each node is a group of training samples and the
distance between the nodes is defined as single linkage,
complete linkage or average linkage [29]. In our algorithm,
however, each node contains a single sample and the
distance between them is the Euclidean distance between
their feature vectors. Furthermore, our algorithm forces the
nodes of the same depth to merge, although this restriction
does not exist in the classical version of agglomerative
clustering. This restriction prevents us from generating an
unbalanced tree in height, which helps to approximate the
visual words by fewer internal nodes.
As mentioned earlier, the leaves of the ontology are the

visual words (ω1, ω2, …, ω8) and the internal nodes (W1,
W2, …, W8) are the ancestors of the visual words. We refer
to the internal nodes as general words since they are
constructed from two child nodes and contain features
which are similar to the features of their children. In the
next subsection, we will show how the informative node
pairs of this tree structure are used to effectively capture the
spatial information in the images.
3.3.2 Finding informative general word pairs: To
obtain informative general word pairs, we start with an
initial set of general words (e.g. W1, W2, W3, W4). We
measure a fitness for every general word of this set to
determine how much is appropriate to be associated for
adjacency modelling. Based on the fitness values of the
nodes, a best first approach is used to determine which
node should be chosen to be expanded [30]. In other
words, the fitness values are computed for all the words
in the set and the word with the lowest fitness is
replaced by its children hoping that they are more
informative than their parent. For example, if we
recognise Wn as the least appropriate general word, it
will be replaced by its children W2n and W2n + 1. This
procedure is iterated until we obtain a predefined number
of general words. For example, the highlighted words in
Fig. 1 are assumed as the most informative words and
are candidates for all the visual words. According to this
method, the fitness value of every node is determined by
feature selection based on χ2 criterion [31]. In detail, we
use the χ2 statistic to measure the lack of independence
between two general words W1 and W2 based on the
following equation

x2 W1, W2

( ) = N × (AD− CB)2

A+ C( ) × B+ D( ) × A+ B( ) × (C + D)

(5)

In this equation, A is the number of times that W1 and W2

occur in vicinity. B is the number of times that W1 occurs
without W2, C is the number of times that W2 occurs
without W1, D is the number of times that neither W1

nor W2 occur and N is the number of pair combinations
of general words. This criterion is equal to zero, if W1

and W2 are independent.
After computing the χ2 distribution for all the pair

combinations, the average goodness of a general word such
as Wi is defined as follows

x2avg Wi

( ) = ∑m
j=1

P Wj

( )
x2 Wi, Wj

( )
(6)

where P(Wj) is the probability of the observation of Wj in the
training images. The expansion of a general word is based on
(6). In other words, in each stage of ontology construction, the
node with the lowest criterion

(
x2avg Wi

( ))
is replaced by its

children.
At last, the candidate general words are used to construct

bigrams. The diagram of this model is illustrated in Fig 2.
To construct bigrams, we traverse the image from the
top-left to the bottom-right and for each patch we consider
right, below and diagonal neighbours. Next, every patch is
assigned to one general word and the numbers of adjacent
general words are considered as new features.
Concatenating these new features with standard BoW
representation provides a new image representation which
we refer to as spatial BoW (SPBoW).
This method is computationally effective because of the

fact that it dissociates the time complexity of adjacency
modelling from the size of the vocabulary and relates it to
the number of general words. Precisely, the number of
general word pairs, which are examined to find the most
appropriate ones to expand, is proportional to the time
complexity. In each step of tree expansion, each pair
combination of leaf nodes is investigated to find the most
appropriate node for expansion. Hence, the time complexity
is proportional to the sum of pair leaves in all the generated
trees.

Sum of pair leaves =
∑Ng

i=2

i

2

( )
;

Ng = number of general words (7)

Comparing this number with all the possible words
combinations, which were used in the contextual Bag of
Words (CBoW) representation [13], shows that our method
outperforms the CBoW representation, when time
complexity is investigated.
Finally, we summarise our method for generating SPBoW

image representation as follows:

1. Construct the visual ontology by using agglomerative
clustering of visual words and obtain the general words
using best first search on the ontology space.



Fig. 2 Adding spatial information to the BoW representation
2. Calculate the frequencies of each individual word in the
image. The histogram of occurrences of these words is
referred to as BoW.
3. Construct the visual ontology and find the most
informative general words using χ2 criterion.
4. Count the number of times that every two informative
general words are adjacent and concatenate these numbers
to the BoW representation.

4 Experimental results

In this section, we evaluate our proposed method for image
classification on three datasets: 15 natural scenes [14],
Caltech-101 [15] and Graz-01 [16]. Although these datasets
contain colour images, all the experiments have been
performed in greyscale. For experimental set-up we follow
Lazebnik et al. [14] and randomly select subsets of the
dataset to create train and test images. However, because of
small implementation differences, our implementation of
Fig. 3 Example images from the 15 natural scenes dataset
[14] performs slightly lower than their reported results. An
support vector machine (SVM) classifier with linear kernel
was chosen to classify the images based on SIFT features
extracted on a regular grid. The patches of the grid are 16 ×
16 pixels and the sampling rate is set to 8 pixels. Hence,
each patch shares some pixels with its neighbours. At last,
k-means was chosen to quantise feature space.

4.1 Fifteen natural scenes

First, experiments were performed on the 15 natural scenes
dataset. Some of these dataset samples are shown in Fig. 3.
The number of images in the classes of this dataset varies
from 210 to 410. We randomly selected 100 images for the
training set and use the rest of the images in each class for
testing. In all the experiments, a one level spatial pyramid
was used, so each image was partitioned into 2 × 2 sub images.
Fig. 4 compares our method against the BoW

representation [2] and the SPM [14] by plotting the



Fig. 4 Classification results for the 15 natural scenes dataset

Horizontal axis shows the vocabulary size and the vertical axis represents the
classification accuracy

Fig. 5 Classification results for the 15 natural scenes dataset
based on word pairs

Horizontal axis shows the number of informative word pairs and the vertical
axis represents the classification accuracy
relationship between classification accuracy and vocabulary
size. In this experiment, we used 16 general words for all
the vocabulary sizes and observed that our method, which
adds words adjacencies information to the BoW,
outperforms the other representations. This supremacy can
be seen for all vocabulary sizes, but for small vocabularies
this is more obvious. For example, the difference between
the classification accuracy of SPBoW and SPM is > 4%
when the size of the vocabulary is equal to 16, whereas this
difference is <1% for a vocabulary of 512 words. The fixed
number of general words (16 general words for all
vocabulary sizes) used for SPBoW representation is the
cause of this behaviour because when we use small
vocabularies, the general words and visual words are more
similar to each other in comparison with cases where larger
vocabularies are used. For example, when we use a
vocabulary that consists of 16 visual words, the general
words are the same as the visual words. Furthermore, the
number of visual words, that each general word is a
candidate of, increases when the size of the vocabulary
becomes larger. For instance, when the vocabulary consists
of 512 words, each of the 16 general words is a candidate
for 32 visual words. In contrast, each general word is a
candidate for only 2 visual words when the size of the
vocabulary is 32. Thus, as we model the spatial relationship
using general words, more information of visual words is
neglected and we observe less improvement in classification
accuracy for larger vocabularies.
Table 1 provides some results to emphasise the importance

of spatial information in various representations. For each
representation, the number of visual words is changed from
16 to 1024. In this experiment, we use 136 most
informative word pairs for CBoW representation and 16
informative general words for SPBoW representation. The
Table 1 Performance of various image representations with different

Image
representation

Vocabulary
size = 16

Vocabulary
size = 32

Vocabulary
size = 64

CBoW 70.1 ± 0.2 71.1 ± 0.7 71.8 ± 0.7
SPBoW 70.1 ± 0.2 71.1 ± 0.4 72.7 ± 0.5
BoW 53.7 ± 0.7 60.8 ± 0.4 66.6 ± 0.6
BoW_AR 65.4 ± 0.7 67.1 ± 0.6 70 ± 0.5
last row of this table shows the classification accuracy for
another image representation, which is provided for
comparison and is called BoW_AR. To obtain
this representation, we concatenated the standard BoW
representations with the bigram terms of SPBoW
representation. Comparing this representation with others,
reveals the significant effect of spatial and adjacency
information in classification accuracy. Besides, the last
column of this table shows a restriction of CBoW
representation, where it cannot extract informative pairs
from a large vocabulary, because it has to construct all the
words combinations and obviously it is not practical for
large vocabularies. This restriction does not exist in our
representation because it models the spatial relationships in
a hierarchical manner and does not need to obtain all the
words combinations.
In addition, our representation outperforms CBoW in

classification accuracy for all vocabulary sizes. Results of
another experiment which supports this claim are shown in
Fig 5. In this experiment, we use the bag of bigrams for
image classification, in which the informative word pairs
(the lower curve) and informative general word pairs (the
upper curve) serve as the feature vectors. The vocabulary
size in this experiment is 256 and the number of word pairs
is varied from 36 to 820. The straight line, which is on top
of the figure, is the classification accuracy based on all the
256 words combinations and shows the upper bound for the
classification accuracy based on words adjacencies.
Again, we can see that the word pairs generated based on

our method are more effective than the informative word
pairs obtained by CBoW representation. The cause of this
supremacy is revealed when we note carefully the feature
vectors of these representations. Although the CBoW
vocabulary sizes

Vocabulary
size = 128

Vocabulary
size = 256

Vocabulary
size = 512

Vocabulary
size = 1024

75.1 ± 0.3 78.2 ± 0.2 78.5 ± 0.4 X
75.2 ± 0.3 78.4 ± 0.4 78.8 ± 0.2 79.1 ± 0.2
70.3 ± 0.6 70.8 ± 0.7 71.4 ± 0.6 71.9 ± 0.6
71.6 ± 0.8 72.4 ± 0.6 73.3 ± 0.7 73.9 ± 0.6



Table 2 Performance of the BoW and CBoW representations
with different word pairs number

Image
representation

Word
pairs

no. = 36

Word
pairs

no. = 136

Word
pairs

no. = 300

Word
pairs

no. = 528

Word
pairs

no. = 820

CBoW 77.8 ± 0.2 78.2 ± 0.2 78.1 ± 0.1 78.2 ± 0.1 78.5 ± 0.5
SPBoW 78.3 ± 0.4 78.4 ± 0.4 78.4 ± 0.2 78.5 ± 0.3 78.9 ± 0.4

Fig. 6 Relative confusion matrix of the 15 natural scenes

The value at row i and column j, which has been scaled, represents the
difference between SPBoW and SPM to classify the images of class i as
class j. The brightness of regions is proportional to the values of the matrix
entries

Table 3 Result of different representations on Caltech-101

Representation BoW SPM CBoW SPBoW

accuracy 43.7 ± 0.2 56.2 ± 0.3 56.4 ± 0.1 57.2 ± 0.1
representation tries to use the most informative word pairs for
adjacency modelling, the bag of bigram generated by this
model is extremely sparse because it uses only a small
fraction of all possible words combinations and neglects
other word pair occurrences. On the other hand, our method
utilises all the word pairs by assigning them to general words.
Another interesting behaviour of the algorithm is shown in

Table 2. In this experiment, the classification accuracies of
CBoW and SPBoW representations based on 256 visual
words and different number of bigrams are reported. We
can see that the classification accuracy does not change
very much when we increase the number of general word
pairs from 36 or 136 to higher values. This behaviour of
the algorithm may be because of the limitation of the
information content of the words adjacencies. To illustrate
this behaviour, consider when two white and blue patches
Fig. 7 Example images from the Caltech-101 dataset
occur in vicinity, showing a part of the sky. To realise that
these patches represent the sky, there is no need to quantise
the blue colour into several different blues and counting the
number of bigrams for every blue colour.
To compare the classification accuracy on each class

separately for two representations, the relative confusion
matrix is shown in Fig. 6. For this experiment, the
vocabulary size and the number of general words are set to
256 and 16, respectively. This matrix illustrates the
relationships between the confusion matrices of SPBoW
and SPM representations. Every entry denotes the absolute
difference between the entries in the confusion matrix of
SPBoW and confusion matrix of SPM [14]. The entries on
the main diagonal of the matrix, which shows the correctly
classified instances, are mostly increased. As can be seen,
the classification rate of the inside city, kitchen and
industrial classes increased more than others. The
non-diagonal elements of this matrix show the
misclassification rate and we can see that the confusion
declines for most of the class pairs. We clearly observe this
improvement in the confusion between inside city as
industrial, industrial as inside city, kitchen as office and
some other class pairs which can be seen in Fig. 6.
4.2 Caltech-101

The second dataset used for the experiments is Caltech-101.
This dataset consists of 101 object classes and the number
of images in each class varies between 31 and 800. This
dataset contains a broad range of objects that are usually
placed in the centre of images. Some samples of this dataset
are shown in Fig. 7. To construct the train and test sets, we
randomly selected 30 images per class for training and 30
images for testing.
The classification performance of the BoW, SPM, CBoW

and SPBoW representations on this dataset are shown in
Table 3. The vocabulary size for this experiment is set to
256 and we use 136 bigrams for the CBoW and SPBoW
representations.
4.3 Graz dataset

Graz-01 is the third dataset, which is chosen to evaluate the
proposed method. This dataset consists of two object
classes: bike, person and a background class. Two
important properties of Graz-01 convinced us to evaluate



Fig. 8 Graz-01 dataset

First row: people class; second row: bike class. The first five images of each row are those which our method classified incorrectly

Table 4 Result of different representations on the Graz-02
dataset

Class BoW SPM SPBoW Opelt [32]

bike 82.7 ± 1.4 85.1 ± 1 85.4 ± 2 86.5
people 79.8 ± 3.2 81.2 ± 1.8 81.1 ± 1.8 80.8
our method on this dataset. First, as Fig. 8 presents, the
images in each class appear at different scales, viewpoints
and positions. In addition, there are significant occlusions,
background clutter and lighting changes in the images of
this dataset, which make it an appropriate dataset to model
real-world images.
In this experiment, we train detectors to detect persons and

bikes on 100 positive and 100 negative examples. Half of the
samples of negative examples are chosen from the other
object class and the rest of them are randomly selected from
the background class. This experiment was designed in such
a way as to be consistent with the earlier study by Opelt
et al. [32]. We generate receiver operating characteristics
(ROC) curves by thresholding the raw SVM output and
report the ROC equal error rate averaged over ten runs.
The results of this experiment are shown in Table 4. As can

be seen, the word adjacency information is still useful and
causes improved performance on this database. Another
notable result is that the deviation between different
representations is quite high and that is because of the high
intra-class variations in this dataset. However, considering
the spatial information in the SPM, CBoW and SPBoW
representations adjusts this situation and causes less
variation in the classification performance. Although
consideration of the spatial information in the SPM, CBoW
and SPBoW representations causes better performance and
less variation in accuracy, however, it cannot completely
overcome the problem of occlusion, background clutter and
lighting changes since most of the misclassified images are
the ones which are suffering from these disorders. For
example, the five images shown on the left of the first and
second rows of Fig. 8 are some of the samples of this
dataset which our method could not classify correctly. As
can be seen, most of these samples contain significant
occlusion, background clutter or lighting changes. On the
other hand, the algorithm proposed by Opelt et al. [32]
performs slightly better in these conditions since its aim
was to handle this situation based on combining weak
classifiers each of which utilises different set of features.
5 Conclusions

In this paper, we modelled the words adjacencies to improve
BoW representation. For this purpose, we considered
informative nodes of an ontological tree structure to model
words adjacencies and the spatial relations of these new
words were added to the BoW representation. The
experimental results showed that this representation
outperforms the other representations and the spatial
relations between the words play an important role in
detecting the contents of images. This claim was verified by
detecting the image contents of the three known datasets.
Like other BoW-based methods, our model suffers from

poor analysis when there exists occlusion, background
clutter, lighting changes or change in scale. We illustrated
this behaviour in Fig. 8, where our algorithm was not able
to recognise the objects in small scales or when they were
not the dominant object of the scene.
One of the advantages of our method is that it can be easily

applied to the field of video analysis to capture temporal
information of consecutive frames. Most of the video
analysis works, based on the BoW representation, confine
their method to the key frames of the shots and disregard
the temporal information. An interesting future work is to
apply the proposed method to the field of temporal
modelling, in which the sequences of general words
occurring in consecutive frames can be utilised for temporal
information capturing. Since different numbers of general
words can be used for this purpose, various accuracies, time
and space complexities can be acquired.
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